Group Theory

Homework
1 Ağustos 1999
Ali Nesin
G denotes a group. For $a, b \in G$ and $X, Y \subseteq G$, we let

$$
\begin{aligned}
& b^{a}=a^{-1} b a \\
& {[a, b]=a^{-1} b^{-1} a b} \\
& {[X, Y]=\text { Subgroup generated by }\{[x, y]: x \in X, y \in Y\}} \\
& {[a, X]=[\{a\}, X]} \\
& a^{X}=\left\{a^{x}: x \in X\right\} \\
& \mathrm{C}_{Y}(X)=\{y \in Y: y x=x y \text { for all } x \in X\} \\
& Z(G)=\mathrm{C}_{G}(G) .
\end{aligned}
$$

1. Prove or disprove:

1a. $\{f: \mathbb{N} \rightarrow \mathbb{N}: f$ is a bijection and $\{x \in \mathbb{N}: f(x) \neq x\}$ is finite $\}$ a subgroup of $\operatorname{Sym}(\mathbf{N})$.

1b. $\{f: \mathbb{N} \rightarrow \mathbb{N}: f$ is a bijection and $|\{x \in \mathbb{N}: f(x) \neq x\}|$ is an even integer $\}$ is a subgroup of $\operatorname{Sym}(\mathbf{N})$.

1c. $\left\{q \in \mathbb{Q}^{>0}: q=a / b\right.$ and b is square-free $\}$ a subgroup of \mathbb{Q} *.
2. Find the subgroup of

2a. \mathbb{Q}^{+}generated by $2 / 3$.
2b. \mathbb{Q}^{+}generated by $2 / 3$ and $4 / 9$.
2c. $\mathbb{Q} *$ generated by $\{1 / p: p$ a prime in $\mathbb{N}\}$.
2d. \mathbb{Q} * generated by $\{1 / p: p$ an odd prime in $\mathbb{N}\}$.
3. Show that the permutations (12) and (12 $2 \ldots n$) generate $\operatorname{Sym}(n)$.
4. Write the elements of $\operatorname{Alt}(3)$ and of $\operatorname{Alt}(4)$.
5. Find $Z(\operatorname{Sym}(4))$.
6. Show that $Z(G) \triangleleft G$.
7. Show that $[X, Y]=[Y, X]$ for all $X, Y \subseteq G$.
8. Let H and K be two normal subgroups of G. Show that $[H, K] \subseteq H \cap K$.
9. Let H be a nonempty finite subset of a group G closed under multiplication. Show that H is a subgroup of G.
10. Let $G / \mathrm{C}_{\mathrm{G}}(a)$ denote the right coset space $\left\{\mathrm{C}_{G}(a) g: g \in G\right\}$. Show that there is a one-to-one correspondence between $G / \mathrm{C}_{\mathrm{G}}(a)$ and a^{G}.
11. Considering $\operatorname{Sym}(4)$ as a subgroup of $\operatorname{Sym}(5)$ in a natural way, find $\mathrm{C}_{\text {Sym(4) }}((25))$.

13a. Show that for all a, b, c in G,

$$
\begin{aligned}
& {[a, b c]=[a, c][a, b]^{c}} \\
& {[a b, c]=[a, c]^{b}[b, c] .}
\end{aligned}
$$

13b. Conclude that if $X \leq G$, then X normalizes the subgroup $[X, Y]$.
13c. Conclude that $[G, X] \triangleleft G$.
14. Show that if G is finitely generated and $H \triangleleft G$, then G / H is also finitely generated.
15. For $a \in G$, define the function $\operatorname{Inn}(a): G \rightarrow G$ by

$$
(\operatorname{Inn}(a))(x)=a x a^{-1}
$$

15a. Show that $\operatorname{Inn}(a) \in \operatorname{Aut}(G)$.
15b. Show that the map $\operatorname{Inn}: G \rightarrow \operatorname{Aut}(G)$ is a homomorphism of groups.
$\mathbf{1 5 c}$. What is the kernel of the homomorphism Inn?
16. Let $H=\{(x, 2 x,-x): x \in \mathbb{R}\}$. Show that $\mathbb{R}^{3} / H \approx \mathbb{R}^{2}$.
17. Let G be a group. Let $Z_{0}(G)=\{1\}$ and

$$
Z_{i+1}(G)=\left\{z \in G: z g z^{-1} g^{-1} \in Z_{i} \text { for all } g \in G\right\}
$$

Show that $\left(Z_{i}(G)\right)_{\mathrm{i}}$ is an increasing chain of normal subgroups of G and that

$$
Z_{i+1}(G) / Z_{i}(G)=Z\left(G / Z_{i}(G)\right)
$$

18. A group G is called simple if its only normal subgroups are $\{1\}$ and G. Let G_{1}, \ldots, G_{n} be simple groups. Find all the normal subgroups of the Cartesian product $G_{1} \times \ldots \times G_{n}$.
19. Show that $|\operatorname{Sym}(n) / \operatorname{Alt}(n)|=2$. $(\operatorname{Hint}: \operatorname{Sym}(n)$ is generated by $\{(1 i): i=2$, $3, \ldots, n\}$).
20. Let $H \triangleleft G$ and $K \leq G$. Show that $\langle H, K\rangle=H K$.
21. Let $H \triangleleft G$. Show that $[G / H, G / H]=[G, G] H / H$.
22. Let $G^{0}=G^{(0)}=G$ and for $i \in \mathbf{N}$, define $G^{i+1}=\left[G, G^{i}\right]$ and $G^{(i+1)}=\left[G^{(i)}\right.$, $\left.G^{(i)}\right]$.

22a. Show that $\left(G^{i}\right)_{i}$ and $\left(G^{(i)}\right)_{i}$ are descending chain of normal subgroups of G.
22b. Show that $G^{(i)} \leq G^{i}$ for all i.
22c. Show that for $i \leq j,\left(G / G^{(j)}\right)^{(i)}=\left(G^{(i)} / G^{(j)}\right)$.

