Group Theory

Homework 1 Ağustos 1999 Ali Nesin

G denotes a group. For $a, b \in G$ and $X, Y \subseteq G$, we let $b^a = a^{-1}ba$ $[a, b] = a^{-1}b^{-1}ab$ [X, Y] = Subgroup generated by $\{[x, y]: x \in X, y \in Y\}$ $[a, X] = [\{a\}, X]$ $a^X = \{a^x : x \in X\}$ $C_Y(X) = \{y \in Y : yx = xy \text{ for all } x \in X\}$ $Z(G) = C_G(G).$

1. Prove or disprove:

1a. $\{f : \mathbb{N} \to \mathbb{N} : f \text{ is a bijection and } \{x \in \mathbb{N} : f(x) \neq x\} \text{ is finite} \}$ a subgroup of Sym(N).

1b. $\{f : \mathbb{N} \to \mathbb{N} : f \text{ is a bijection and } | \{x \in \mathbb{N} : f(x) \neq x\} | \text{ is an even integer} \}$ is a subgroup of Sym(**N**).

1c. $\{q \in \mathbb{Q}^{>0} : q = a/b \text{ and } b \text{ is square-free}\}\$ a subgroup of \mathbb{Q}^{*} .

2. Find the subgroup of

2a. \mathbb{Q}^+ generated by 2/3.

2b. \mathbb{Q}^+ generated by 2/3 and 4/9.

2c. \mathbb{Q} * generated by {1/*p* : *p* a prime in \mathbb{N} }.

2d. \mathbb{Q} * generated by {1/*p* : *p* an odd prime in \mathbb{N} }.

3. Show that the permutations $(1 \ 2)$ and $(1 \ 2 \ ... \ n)$ generate Sym(n).

4. Write the elements of Alt(3) and of Alt(4).

5. Find *Z*(Sym(4)).

6. Show that $Z(G) \triangleleft G$.

7. Show that [X, Y] = [Y, X] for all $X, Y \subseteq G$.

8. Let *H* and *K* be two normal subgroups of *G*. Show that $[H, K] \subseteq H \cap K$.

9. Let H be a nonempty finite subset of a group G closed under multiplication. Show that H is a subgroup of G.

10. Let $G/C_G(a)$ denote the right coset space $\{C_G(a)g : g \in G\}$. Show that there is a one-to-one correspondence between $G/C_G(a)$ and a^G .

11. Considering Sym(4) as a subgroup of Sym(5) in a natural way, find $C_{Sym(4)}((25))$.

12. Let $a = (1 \ 2)(3 \ 4) \in \text{Sym}(4) \le \text{Sym}(5)$. Find the set $a^{\text{Sym}(4)}$. Find $a^{\text{Sym}(5)}$.

13a. Show that for all *a*, *b*, *c* in *G*,

[*a*, *bc*] = [*a*, *c*] [*a*, *b*]^{*c*}
[*ab*, *c*] = [*a*, *c*]^{*b*}[*b*, *c*].

13b. Conclude that if *X* ≤ *G*, then *X* normalizes the subgroup [*X*, *Y*].
13c. Conclude that [*G*, *X*] ⊲ *G*.

14. Show that if *G* is finitely generated and $H \triangleleft G$, then *G*/*H* is also finitely generated.

15. For $a \in G$, define the function $\text{Inn}(a) : G \to G$ by $(\text{Inn}(a))(x) = axa^{-1}$.

15a. Show that $Inn(a) \in Aut(G)$.

15b. Show that the map $\text{Inn} : G \to \text{Aut}(G)$ is a homomorphism of groups. **15c.** What is the kernel of the homomorphism Inn?

16. Let $H = \{(x, 2x, -x) : x \in \mathbb{R}\}$. Show that $\mathbb{R}^3/H \approx \mathbb{R}^2$.

17. Let *G* be a group. Let $Z_0(G) = \{1\}$ and $Z_{i+1}(G) = \{z \in G : zgz^{-1}g^{-1} \in Z_i \text{ for all } g \in G\}.$ Show that $(Z_i(G))_i$ is an increasing chain of normal subgroups of *G* and that $Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G)).$

18. A group *G* is called **simple** if its only normal subgroups are $\{1\}$ and *G*. Let $G_1, ..., G_n$ be simple groups. Find all the normal subgroups of the Cartesian product $G_1 \times ... \times G_n$.

19. Show that | Sym(n)/Alt(n) | = 2. (**Hint:** Sym(*n*) is generated by $\{(1 \ i) : i = 2, 3, ..., n\}$).

20. Let $H \triangleleft G$ and $K \leq G$. Show that $\langle H, K \rangle = HK$.

21. Let $H \triangleleft G$. Show that [G/H, G/H] = [G, G]H/H.

22. Let $G^{\circ} = G^{(\circ)} = G$ and for $i \in \mathbb{N}$, define $G^{i+1} = [G, G^i]$ and $G^{(i+1)} = [G^{(i)}, G^{(i)}]$. **22a.** Show that $(G^i)_i$ and $(G^{(i)})_i$ are descending chain of normal subgroups of G. **22b.** Show that $G^{(i)} \leq G^i$ for all i. **22c.** Show that for $i \leq j$, $(G/G^{(j)})^{(i)} = (G^{(i)}/G^{(j)})$.