MATH 111 August 1998 Ali Nesin

1. Let *G* and *H* be two groups and let φ be an isomorphism from *G* into *H*. Show that φ^{-1} is an isomorphism from *H* into *G*. Conclude that Aut(*G*) is a group.

2. Let *G* be a group. Show that Z(G) is a normal subgroup.

3. Let *G* and *H* be two groups and let φ be a homomorphism from *G* into *H*.

3a. Show that $\text{Ker}(\varphi)$ is a normal subgroup of *G*.

3b. Show that $Im(\varphi)$ is a subgroup of *G*.

3c. Show that $\text{Ker}(\varphi) = 1$ if and only if φ is one-to-one.

3d. Show that the groups $G/\text{Ker}(\varphi)$ and $\text{Im}(\varphi)$ are isomorphic. (Hint: The map $\psi: G/\text{Ker}(\varphi) \to \text{Im}(\varphi)$ defined by $\psi(g\text{Ker}(\varphi)) = \varphi(g)$ is a well-defined isomorphism between the two groups).

4. Let *G* be a group. For $x, y \in G$, define,

4a. For fixed $y \in G$, show that the map $x \to yxy^{-1}$ is an automorphism of G. Call Inn(y) this automorphism.

4b. Show that the map $y \to \text{Inn}(y)$ is a homomorphism from *G* into Aut(G). Call Inn this homomorphism.

4c. Show that Ker(Inn) = Z(G).

4d. Show that Inn(G) is a normal subgroup of Aut(G).

5. Let *G* be a group and $x \in G$. Let $n, m \in \mathbb{Z}$. Set k = gcd(n, m). Show that the subgroup generated by x^n and x^m is equal to the subgroup generated by x^k .

Definitions:

Let G be a group.

If $X \subseteq G$, the **subgroup generated by** X is the smallest subgroup of G containing X. It exists and it is equal to the intersection of all the subgroups of G that contain X. It is also equal to the set of finite products of elements from X and their inverses.

If *H* is a subgroup of *G*, we define the set G/H as follows:

$$G/H = \{xH : x \in G\}$$

A subgroup *H* of *G* is called **normal** if xH = Hx for all $x \in G$, equivalently if $xH \subseteq Hx$ for all $x \in G$. If *H* is normal in *G*, then the set *G*/*H* becomes a group via the product (xH)(yH) = xyH. (If *H* is not normal, then this product is not a well-defined operation.)

A homomorphism from a group *G* into a group *H* is a map $\varphi: G \to H$ such that $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in G$. The kernel **Ker**(φ) of φ is defined to be the set of elements $x \in G$ such that $\varphi(x) = 1$. If φ is one-to-one and onto, then φ is called an **isomorphism**. Then the groups *G* and *H* are said to be **isomorphic**. If G = H, then φ is called an **automorphism** of *G*. The set of automorphisms of *G* is denoted by **Aut**(*G*).

The **center** of *G* is the set $Z(G) := \{z \in G : \forall g \in G \ zg = gz\}$.