Math 211 (Algebra)

Work at the Nesin Foundation Salih Azgın – Ali Nesin – Şafak Özden October 1999

Throughout *G* stands for a group.

1. Let $H \triangleleft G$ and $K \leq G$. **1a.** Show that $\langle H, K \rangle = HK = KH$. **1b.** Show that $H \triangleleft HK$ and $K \cap H \triangleleft K$. **1c.** Show that $HK/H \approx K/(K \cap H)$.

2. Let *H* and *K* be two normal subgroups of *G* such that $H \cap K = \{1\}$. Show that hk = kh for all $h \in H$ and $k \in K$.

3. Let *H* be another group, $g \in G$ have finite order and $\varphi : G \to H$ a group homomorphism. Show that $o(\varphi(g))$ divides o(g).

4. Show that every ascending chain of subgroups is stationary if and only if every subgroup of G is finitely generated.

5. A subgroup *H* of *G* is called **characteristic** if $\varphi(H) = H$ for all $\varphi \in Aut(G)$. **5a.** Show that a characteristic subgroup is a normal subgroup.

5b. Show that a subgroup *H* of *G* is characteristic if $\varphi(H) \le H$ for all $\varphi \in Aut(G)$. **5c.** Show that Z(G) is a characteristic subgroup of *G*.

5d. Let $X \subseteq G$ be such that $\varphi(X) \subseteq X$ for all $\varphi \in Aut(G)$. Show that $\langle X \rangle$ is a characteristic subgroup of *G*.

5e. Show that the subgroup generated by all the minimal subgroups of G is characteristic.

6. For x and y in G, define $x^y = x^{-1}yx$ and $x^G = \{x^y : y \in G\}$. The set x^G is called the **conjugacy class** of x.

6a. Show that the set of conjugacy classes partition G.

6b. What are the elements whose conjugacy class consists of one element?

6c (**Reineke**). Assume $G = \{1\} \cup x^G$ for $x \in G$. Show that |G| = 1 or 2.

6d. What can you say about G if $G = \{1\} \cup x^G \cup y^G$ for some x and $y \in G$?