1. Let R be a commutative ring. Let $I \triangleleft R$. Show that $(R / I)[X] \approx R[X] / I[X]$.
2. Prove Gauss Lemma for \mathbb{Z} : Let $f \in \mathbb{Z}[X]$ be irreducible over \mathbb{Z}. Show that f is irreducible over \mathbb{Q}.
3. Show that $X^{3}+2 X^{2}+4 X-6$ is irreducible over \mathbb{Q}.
4. Prove Eisenstein Criterion: Let $f(X)=f_{0}+f_{1} X+\ldots+f_{n} X^{n} \in \mathbb{Z}[X]$. Suppose that there is a prime $p \in \mathbb{Z}$ such that
i) $\quad p \mid a_{i}$ for $i=0,1, \ldots, n-1$.
ii) $p \nmid a_{n}$.
iii) $p^{2} \nmid a_{0}$.

Show that f is irreducible over \mathbb{Q}.
5. Show that $X^{5}+2 X^{3}+(8 / 7) X^{2}-(4 / 7) X+2 / 7$ is irreducible over \mathbb{Q}.
6. Concude from above that $2 X^{5}-4 X^{4}+8 X^{3}+14 X^{2}+7$ is irreducible over \mathbb{Q}.
7. Show that if $p \in \mathbb{N}$ is a prime then $1+X+X^{2}+\ldots+X^{p-1}$ is irreducible over \mathbb{Q}.
8. Let $f \in \mathbb{Z}[X]$ and $p \in \mathbb{Z}$ a prime that does not divide the leading coefficient of f. Show that if the image of f in $\mathbf{F}_{p}[X]$ is irreducible then so is f.
9. Conclude from above that $7 X^{4}+10 X^{3}-2 X^{2}+4 X-5$ is irreducible over \mathbb{Z}.
10. Let K be a field of prime characteristic p. Let $f \in K[X]$. Show that $f\left(X^{p}\right)$ is irreducible over K iff $f(X)$ is irreducible over K and not all the coefficients of f are p-th powers in K.
11. Show that $\mathbb{Q}[\sqrt{ } 2, \sqrt{ } 5]=\mathbb{Q}[\sqrt{ } 2+\sqrt{ } 5]$. Determine the minimal polynomial of $\sqrt{ } 2+\sqrt{ } 5$ over \mathbb{Q}, over $\mathbb{Q}[\sqrt{ } 2]$ and over $\mathbb{Q}[\sqrt{ } 5]$. Is $\mathbb{Q}[\sqrt{ } 2+\sqrt{ } 5]$ Galois over \mathbb{Q} ?
12. Show that $f(X)=X^{3}+X+1$ is irreducible over \mathbb{Q}. Let $\alpha \in \mathbb{C}$ be a root of f. Express α^{-1} and $(\alpha+2)^{-1}$ as a linear combination of $\mathbb{Q}[\alpha]$.
13. Determine the normal closure of $\mathbb{Q}\left[2^{1 / 4}\right]$ over \mathbb{Q}.
14. Show that every field extension of degree 1 and 2 of \mathbb{Q} is a Galois extension. Show that this is not true for extensions of degree >2.
15. Show that every extension of the form $\mathbb{Q}\left[\sqrt{ } a_{1}, \ldots, \sqrt{ } a_{n}\right]$ where each $a_{i} \in \mathbb{Q}$ is Galois over \mathbb{Q}.
16. Is it true that a Galois extension over a Galois extension of \mathbb{Q} is a Galois extension of \mathbb{Q} ? Prove or disprove.
17. Show that $\mathbb{Q}[\sqrt{ } 2, i \sqrt{ } 3]$ is Galois over \mathbb{Q}. Find its Galois group. Find all the subgroups of the Galois group and the corresponding intermediate subfields.

