Field Theory Midterm 2008 November Ali Nesin

- **1.** Let *R* be a commutative ring. Let $I \triangleleft R$. Show that $(R/I)[X] \approx R[X]/I[X]$.
- **2.** Prove Gauss Lemma for \mathbb{Z} : Let $f \in \mathbb{Z}[X]$ be irreducible over \mathbb{Z} . Show that f is irreducible over \mathbb{Q} .
- **3.** Show that $X^3 + 2X^2 + 4X 6$ is irreducible over \mathbb{Q} .
- **4.** Prove Eisenstein Criterion: Let $f(X) = f_0 + f_1X + ... + f_nX^n \in \mathbb{Z}[X]$. Suppose that there is a prime $p \in \mathbb{Z}$ such that
 - i) $p | a_i \text{ for } i = 0, 1, ..., n 1.$
 - ii) $p \nmid a_n$.
 - iii) $p^2 \nmid a_0$.

Show that *f* is irreducible over \mathbb{Q} .

- 5. Show that $X^5 + 2X^3 + (8/7)X^2 (4/7)X + 2/7$ is irreducible over \mathbb{Q} .
- 6. Concude from above that $2X^5 4X^4 + 8X^3 + 14X^2 + 7$ is irreducible over \mathbb{Q} .
- 7. Show that if $p \in \mathbb{N}$ is a prime then $1 + X + X^2 + ... + X^{p-1}$ is irreducible over \mathbb{Q} .
- 8. Let $f \in \mathbb{Z}[X]$ and $p \in \mathbb{Z}$ a prime that does not divide the leading coefficient of f. Show that if the image of f in $\mathbf{F}_p[X]$ is irreducible then so is f.
- 9. Conclude from above that $7X^4 + 10X^3 2X^2 + 4X 5$ is irreducible over \mathbb{Z} .
- **10.** Let *K* be a field of prime characteristic *p*. Let $f \in K[X]$. Show that $f(X^p)$ is irreducible over *K* iff f(X) is irreducible over *K* and not all the coefficients of *f* are *p*-th powers in *K*.
- **11.** Show that $\mathbb{Q}[\sqrt{2}, \sqrt{5}] = \mathbb{Q}[\sqrt{2} + \sqrt{5}]$. Determine the minimal polynomial of $\sqrt{2} + \sqrt{5}$ over \mathbb{Q} , over $\mathbb{Q}[\sqrt{2}]$ and over $\mathbb{Q}[\sqrt{5}]$. Is $\mathbb{Q}[\sqrt{2} + \sqrt{5}]$ Galois over \mathbb{Q} ?
- **12.** Show that $f(X) = X^3 + X + 1$ is irreducible over \mathbb{Q} . Let $\alpha \in \mathbb{C}$ be a root of *f*. Express α^{-1} and $(\alpha + 2)^{-1}$ as a linear combination of $\mathbb{Q}[\alpha]$.
- **13.** Determine the normal closure of $\mathbb{Q}[2^{1/4}]$ over \mathbb{Q} .
- 14. Show that every field extension of degree 1 and 2 of \mathbb{Q} is a Galois extension. Show that this is not true for extensions of degree > 2.
- **15.** Show that every extension of the form $\mathbb{Q}[\sqrt{a_1}, ..., \sqrt{a_n}]$ where each $a_i \in \mathbb{Q}$ is Galois over \mathbb{Q} .
- 16. Is it true that a Galois extension over a Galois extension of \mathbb{Q} is a Galois extension of \mathbb{Q} ? Prove or disprove.
- 17. Show that $\mathbb{Q}[\sqrt{2}, i\sqrt{3}]$ is Galois over \mathbb{Q} . Find its Galois group. Find all the subgroups of the Galois group and the corresponding intermediate subfields.