Math 212

Midterm 1 April 1999 Ali Nesin

1. Show that the group \mathbb{Q}/\mathbb{Z} has a unique subgroup of order *n* for all $n \ge 1$.

2. Let *R* be a commutative ring with 1 and let *S* be a multiplicative subset (i.e. *SS* \subseteq *S*) of *R* not containing 0. Show that there is a prime ideal *P* of *R* such that $P \cap S = \emptyset$. (**Hint:** Use Zorn's Lemma).

3. Let *F* be a field. What are the automorphisms of the ring of polynomials F[X]. You may assume that you know the automorphisms of *F*.

4a. Let *R* be a domain (a commutative ring with 1 and without zerodivisors) and *F* a field. Assume that *F* is a subring of *R*. Then *R* is naturally a vector space over *F*. Show that if $\dim_F(R)$ is finite, then *R* is a field.

4b. Let R be a domain (a commutative ring with 1 and without zerodivisors) which is also a finite dimensional vector space over a field F. Show that R is a field.

5a. (The Eisenstein Criterion) Let $f(X) = X^n + a_1 X^{n-1} + ... + X_n \in \mathbb{Z}[x]$. Assume there is a prime *p* that divides $a_1, ..., a_n$ but that p^2 does not divide a_n . Show that f(X) is irreducible in $\mathbb{Z}[X]^1$.

5b. Show that if *p* is a prime, then the polynomial $f(x) = x^{p-1} + x^{p-2} + ... + x + 1$ is irreducible in $\mathbb{Z}[x]$.

5c. Let $f(x) = 5x^4 - 7x + 7$. Show that *f* is irreducible in $\mathbb{Z}[x]$.

6. Find a domain *R* with two distinct primes *p* and *q* such that $rp + sq \neq 1$ for all $r, s \in R$.

7. Find the number of irreducible monic polynomials of degree 2 over \mathbf{F}_{q} . (q is a power of a prime, of course).

Find the number of irreducible monic polynomials of degree 3 over \mathbf{F}_q .

8. Let q be a power of the prime p and let $a \in \mathbf{F}_q$. Show that the polynomial map $f: \mathbf{F}_q \to \mathbf{F}_q$ defined by $x \to x^p - x + a$ is never onto.

¹ By Gauss' Lemma, to be irreducible in $\mathbb{Z}[X]$ is equivalent to be irreducible in $\mathbb{Q}[X]$. You don't need to use this fact for this question.