Algebra Final Exam May 1999 Ali Nesin

1. Let *p* be a prime. Does the subgroup $\bigoplus_{\omega} \mathbb{Z}/p\mathbb{Z}$ of $\prod_{\omega} \mathbb{Z}/p\mathbb{Z}$ have a complement in $\prod_{\omega} \mathbb{Z}/p\mathbb{Z}$? (8 pts.)

2. Let *p* be a prime. Does the the ideal $\bigoplus_{\omega} \mathbb{Z}/p\mathbb{Z}$ of the ring $\prod_{\omega} \mathbb{Z}/p\mathbb{Z}$ have a complement (as a ring) in $\prod_{\omega} \mathbb{Z}/p\mathbb{Z}$? (9 pts.)

3. Let *K* be an infinite field. Assume $f \in K[T_1, ..., T_n]$ is such that f(x) = 0 for all $x \in K^n$. Show that f = 0. (10 pts.)

4. Let *K* be a field. For $A \subseteq K[T_1, ..., T_n]$ define,

 $V(A) = \{ (x_1, ..., x_n) \in K^n : f(x_1, ..., x_n) = 0 \text{ for all } f \in A \}.$

Such a set is called an **algebraic variety** or **an algebraic subset** or **a Zariski closed** subset of K^n .

4a. What are $V(\emptyset)$ and $V(\{1\})$? (2 pts.)

4b. What are the algebraic subsets of *K*? (4 pts.)

4c. Show that $V(A) = V(\langle A \rangle)$ where $\langle A \rangle$ is the ideal generated by *A*. (2 pts.)

4d. Show that $V(A) = V(f_1, ..., f_k)$ for some $f_1, ..., f_k \in K[T_1, ..., T_n]$. (4 pts.)

4e. Show that if *K* real field, then for any $A \subseteq K^n$, V(A) = V(f) for some $f \in K[T_1, ..., T_n]$. (3 pts.)

4f. Show that $V(A) \subseteq V(B)$ if $B \subseteq A \subseteq K[T_1, ..., T_n]$. (1 pt.)

4g. Show that $\bigcap_i V(A_i) = V(\bigcup_i A_i)$ for any family A_i of subsets of $K[T_1, ..., T_n]$. (1 pt.)

4h. Show that $V(A) \cup V(B) = V(AB)$ for any $A, B \subseteq K[T_1, ..., T_n]$. Here AB denotes the set (or the ideal generated by) $\{ab : a \in A, b \in B\}$. (2 pts.)

4i. Call a subset of K^n **Zariski open** if its complement is Zariski closed. Show that the Zariski open subsets of K^n form a topology. (4 pts.)

5. Let *R* be a commutative ideal with 1. An ideal *I* of *R* is called **radical** if for all $r \in R$, $r \in I$ whenever $r^n \in I$ for some natural number *n*.

5a. Show that the intersection of radical ideals is a radical ideal. Conclude that one can speak of "the radical ideal generated by a subset $A \subseteq R$ ". (2 pts.)

5b. Let $A \subseteq R$. Show that the radical ideal generated by A is

$$\{r \in R : r^n = \sum_{i=1}^{n} x_i a_i \text{ for some } n, k \in \mathbb{N}, x_1, \dots, x_k \in R \text{ and } a_1, \dots, a_n \in A\}.$$

(4 pts.)

5c. Show that *I* is a radical ideal of *R* iff R/I has no nilpotent elements. (2 pts.)

6. Let *K* be a field and $X \subseteq K^n$. Define,

 $I(X) = \{f \in K[T_1, ..., T_n] : f(x) = 0 \text{ for all } x \in X\}.$ **6a.** Show that I(X) is a radical ideal. (1 pt.) **6b.** What is $I(\emptyset)$? (1 pt.) **6c.** What can you say about $I(K^n)$? (3 pts.) **6d.** What can you say about I(X) if $X \subseteq K$? (4 pts.) **6e.** What can you say about I(X) if X has only element? (5 pts.) **6f.** Show that $I(X) \subseteq I(Y)$ if $Y \subseteq X \subseteq K^n$. (1 pt.) **6g.** Show that $I(\bigcup_i X_i) = \bigcap_i I(X_i)$ for any family of subsets of K^n . (1 pt.) **6h.** Let $X = \{(0, y) : y \in K\}$ and $Y = \{(x, 0) : x \in K\}$. Find $I(X \cup Y)$. (1 pt.)

7. Let *K* be a field.

7a. Show that $V(A) = V(\sqrt{A})$ for any $A \subseteq K[T_1, ..., T_n]$. Here \sqrt{A} denotes the radical ideal generated by A. (2 pts.)

7b. Show that $A \subseteq I(V(A))$ for all $A \subseteq K[T_1, ..., T_n]$. Conclude that $\sqrt{A} \subseteq I(V(A))$ for all $A \subseteq K[T_1, ..., T_n]$. Give an example of a field *K* and a radical ideal *A* where the inclusion is strict. (1+2+4 pts.)

7c. Show that $X \subseteq V(I(X))$ for all $X \subseteq K^n$. Give an example of a field K and a subset X where the inclusion is strict. (1+4 pts.)

7d. Show that V(A) = V(I(V(A))) for all $A \subseteq K[T_1, ..., T_n]$. (3 pts.)

7e. Show that I(X) = I(V(I(X))) for all $X \subseteq K^n$. (3 pts.)

7f. Let \mathfrak{R} be the set of radical ideals of $K[T_1, ..., T_n]$ and Ω the set of Zariski closed subsets of K^n . Show that the map *V* from \mathfrak{R} into Ω is onto and the map *I* from Ω into \mathfrak{R} is one-to-one and that *V* o *I* = Id. (5 pts.)