Set Theory Midterm

Ali Nesin

November 22, 2014
I. Let $G=\{f: \mathbb{Z} \longrightarrow \mathbb{Z}:$ for all $x, y \in \mathbb{Z}, f(x+y)=f(x)+f(y)\}$.

1. For $a \in \mathbb{Z}$ define the function $f_{a}: \mathbb{Z} \longrightarrow \mathbb{Z}$ by the formula $f_{a}(x)=a x$. Show that $f_{a} \in G$.
2. Show that $f_{a}+f_{b}=f_{a+b}$ for any $a, b \in \mathbb{Z}$.
3. Show that $f_{a} \circ f_{b}=f_{a b}$ for any $a, b \in \mathbb{Z}$.
4. Let $f \in G$. Show that $f(0)=0$.
5. Let $f \in G$. Show that for any $n \in \mathbb{Z}, f(-n)=-f(n)$.
6. Let $f \in G$. Show that for any $n \in \mathbb{N}, f(n)=n f(1)$.
7. Let $f \in G$. Show that if $a=f(1)$, then $f=f_{a}$.
8. For what integers a, is f_{a} a bijection of \mathbb{Z} ?
II. Let $G=\{f: \mathbb{Q} \longrightarrow \mathbb{Q}:$ for all $x, y \in \mathbb{Q}, f(x+y)=f(x)+f(y)\}$. As in the previous question, for $a \in \mathbb{Q}$ the function $f_{a}: \mathbb{Q} \longrightarrow \mathbb{Q}$ defined by the formula $f_{a}(x)=a x$ is in G.
9. For what rational numbers a, is f_{a} a bijection of \mathbb{Q} ?
10. Let $f \in G$. Show that for any $n \in \mathbb{N}$ and $q \in \mathbb{Q}, f(n q)=n f(q)$.
11. Show that if $f \in G$ and $a=f(1)$ then $f=f_{a}$.
III. Let X be a set. We will show that there is no surjection from X into its set of subsets $\wp(X)$. In order to get a contradiction, we assume that there is such an f. Let

$$
A=\{x \in X: x \notin f(x)\}
$$

Let $a \in X$ such that $f(a)=A$. By thinking about the question whether or not a is an element of A arrive at a contradiction.
IV. Let a, b, c, d be four sets. Suppose $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$. Show that $a=c$ and $b=d$.
V. Let X be a set and \equiv an equivalence relation defined on X. Show that the equivalence classes are disjoint.
VI. Let the relation \equiv be defined on \mathbb{R} by

$$
x \equiv y \Leftrightarrow x-y \in \mathbb{Z}
$$

1. Show that \equiv is and equivalence relation on $r r$.
2. Find a set of representatives of \mathbb{R} / \equiv.
3. Show that if $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ then $x+y \equiv x^{\prime}+y^{\prime}$.
4. Is it true that if $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ then $x y \equiv x^{\prime} y^{\prime}$ holds for any $x, y \in \mathbb{R}$?
