Set Theory Midterm

Ali Nesin

November 22, 2014

- **I.** Let $G = \{f : \mathbb{Z} \longrightarrow \mathbb{Z} : \text{ for all } x, y \in \mathbb{Z}, f(x+y) = f(x) + f(y) \}.$
 - 1. For $a \in \mathbb{Z}$ define the function $f_a : \mathbb{Z} \longrightarrow \mathbb{Z}$ by the formula $f_a(x) = ax$. Show that $f_a \in G$.
 - 2. Show that $f_a + f_b = f_{a+b}$ for any $a, b \in \mathbb{Z}$.
 - 3. Show that $f_a \circ f_b = f_{ab}$ for any $a, b \in \mathbb{Z}$.
 - 4. Let $f \in G$. Show that f(0) = 0.
 - 5. Let $f \in G$. Show that for any $n \in \mathbb{Z}$, f(-n) = -f(n).
 - 6. Let $f \in G$. Show that for any $n \in \mathbb{N}$, f(n) = nf(1).
 - 7. Let $f \in G$. Show that if a = f(1), then $f = f_a$.
 - 8. For what integers a, is f_a a bijection of \mathbb{Z} ?

II. Let $G = \{f : \mathbb{Q} \longrightarrow \mathbb{Q} : \text{ for all } x, y \in \mathbb{Q}, f(x+y) = f(x) + f(y)\}$. As in the previous question, for $a \in \mathbb{Q}$ the function $f_a : \mathbb{Q} \longrightarrow \mathbb{Q}$ defined by the formula $f_a(x) = ax$ is in G.

- 1. For what rational numbers a, is f_a a bijection of \mathbb{Q} ?
- 2. Let $f \in G$. Show that for any $n \in \mathbb{N}$ and $q \in \mathbb{Q}$, f(nq) = nf(q).
- 3. Show that if $f \in G$ and a = f(1) then $f = f_a$.

III. Let X be a set. We will show that there is no surjection from X into its set of subsets $\wp(X)$. In order to get a contradiction, we assume that there is such an f. Let

$$A = \{ x \in X : x \notin f(x) \}.$$

Let $a \in X$ such that f(a) = A. By thinking about the question whether or not a is an element of A arrive at a contradiction.

IV. Let a, b, c, d be four sets. Suppose $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. Show that a = c and b = d.

V. Let X be a set and \equiv an equivalence relation defined on X. Show that the equivalence classes are disjoint.

VI. Let the relation \equiv be defined on $\mathbb R$ by

$$x \equiv y \Leftrightarrow x - y \in \mathbb{Z}.$$

- 1. Show that \equiv is and equivalence relation on rr.
- 2. Find a set of representatives of \mathbb{R}/\equiv .
- 3. Show that if $x \equiv x'$ and $y \equiv y'$ then $x + y \equiv x' + y'$.
- 4. Is it true that if $x \equiv x'$ and $y \equiv y'$ then $xy \equiv x'y'$ holds for any $x, y \in \mathbb{R}$?