Algebra (Group Theory) Midterm

Ali Nesin

November 21, 2014

- **I.** Let p be a prime.
- 1. Show that for any $k \in \mathbb{N}$, $(1+p)^k \equiv 1 + pk \mod p^2$. Conclude that $(1+p)^p \equiv 1 \mod p^2$. Conclude that the formula $\sigma_k(x) = (1+pk)x$ defines an automorphism of $\mathbb{Z}/p^2\mathbb{Z}$ of order p. Show that $\sigma_1^k = \sigma_k$.
- 2. Show that any automorphism of order p of $\mathbb{Z}/p^2\mathbb{Z}$ is one of the automorphisms σ_k defined in the previous question for some $k = 1, 2, \ldots, p-1$.

II. Let G be a group and $a \in Z_2(G)$ (i.e. $[a, G] \subseteq Z(G)$).

- 1. Show that for any $x, y \in G$, [a, xy] = [a, x][a, y].
- 2. Show that for any integer n we have $[a, x^n] = [a, x]^n$.

III. Let G be a group, $a, b \in G$ and $n \in \mathbb{N}$.

- 1. Show that $(ab)^n = a^n b^n [b, a^{n-1}]^{b^{n-1}} [b, a^{n-2}]^{b^{n-2}} \cdots [b, a]^b$.
- 2. Conclude that if $[b, a] \in Z(G)$ then $(ab)^n = a^n b^n [b, a^{n-1}] [b, a^{n-2}] \cdots [b, a]$.
- 3. Assume $b \in Z_2(G)$, by using Question I show that

$$(ab)^n = a^n b^n [b, a^{1+2+\dots+(n-1)}] = a^n b^n [b, a]^{n(n-1)/2}.$$

- 4. Assume $b \in Z_2(G)$ and that Z(G) is a subgroup of exponent p for a prime p > 2. By using the previous question show that $(ab)^p = a^p b^p$.
- 5. Assume that $G = Z_2(G)$ and that Z(G) is a subgroup of exponent p for a prime p > 2. Show that the map defined by $x \mapsto x^p$ is a homomorphism of G.

IV. Let G be a nonabelian group of order p^3 where p is a prime > 2...

- 1. Show that $Z(G) \simeq \mathbb{Z}/p\mathbb{Z}$ and $G/Z(G) \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- 2. Show that $g^p \in Z(G)$ for any $g \in G$.
- 3. Show that for any $g \in G$, deg g is either p or p^2 .
- 4. Show that G' = Z(G).
- 5. Show that $G = \langle x, y, z \rangle$ and that

$$G = \{x^a y^b z^c : a, b, c \in \{0, 1, \dots, p-1\}\}.$$

6. Assume x and y both have degree p^2 . In this case we may assume without loss of generality that $z = x^p$. Show that there is an i = 1, 2, ..., p - 1 such that $y^p = (x^p)^i = x^{pi}$. By using Question III.5 show that $x^{-i}y$ has order p. By showing that $G/Z(G) = \langle \overline{x}, \overline{x^{-i}y} \rangle$ show that we may assume y has order p. Conclude that $G = \langle x \rangle \rtimes \langle y \rangle \simeq \mathbb{Z}/p^2 \mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$. Notice at this point that in order to finish the classification in this case we need to find automorphisms of $\mathbb{Z}/p^2\mathbb{Z}$ of order p, which is done in Question I.