Analysis II, Spring 2013 Midterm

Ali Nesin

April 6, 2013

Part I. Let $X \subseteq \mathbb{R}$. A **cover** of X is a family of open intervals $(U_i)_{i \in I}$ such that $X \subseteq \bigcup_{i \in I} U_i$. If $J \subseteq I$ is such that $(U_j)_{j \in J}$ is a cover of X then we say that it is a **subcover** of $(U_i)_{i \in I}$. If I is finite we say that $(U_i)_{i \in I}$ is a **finite cover** of X. A subset $X \subset \mathbb{R}$ is called **compact** if any cover of X has a finite subcover.

- 1. (2 pts.) Show that finite subsets of \mathbb{R} are compact.
- 2. (3 pts.) Show that the union of any two compact subsets of \mathbb{R} is a compact subset of \mathbb{R} .
- 3. (5 pts.) Show that a compact subset of \mathbb{R} must be bounded.
- 4. (5 pts.) Show that the intervals (0, 1) and (0, 1] are not compact.
- 5. (20 pts.) Show that the interval [0, 1] is compact. (Hint: Assume not. By Question 2, either [0, 1/2] or [1/2, 1] is not compact. Choose one of them and keep going.)

Part II. Let $A \subseteq \mathbb{R}$ and $a \in \mathbb{R}$. We say that a is a *limit point* of A if the intersection of A with every open interval containing a contains a point different from a.

- 1. (2 pts.) Show that the set of limit points of (0, 1) is [0, 1].
- 2. (2 pts.) Find the set of limit points of $\{1/n : n = 1, 2, 3, ...\}$.
- 3. (2 pts.) Find the set of limit points of \mathbb{Z} .
- 4. (2 pts.) Find the set of limit points of \mathbb{Q} .
- 5. (5 pts.) Let $A \subseteq \mathbb{R}$ be such that every rational number is a limit point of A. Show that every real number is a limit point of A.
- 6. (10 pts.) Let $A \subseteq \mathbb{R}$. Let B be the set of limit points of A. Show that every limit point of B is in B.
- 7. (15 pts.) Show that a is a limit point of $A \subseteq \mathbb{R}$ if and only if there is a sequence whose terms are all distinct that converges to a.

8. (10 pts.) Let $A \subseteq \mathbb{R}$ be bounded above. Let $\mathcal{L}(A)$ be the set of limit points of A. Assume $\mathcal{L}(A) \neq \emptyset$. Show that $\mathcal{L}(A)$ is bounded above and that $\sup \mathcal{L}(A) \in \mathcal{L}(A)$.