Algebra II, Mitterm

April 4, 2013 Ali Nesin

Let *G* be a sharply 2-transitive group acting on a set *X* of size *n*. Let $x \in X$, $T = G_x$ and $N = (G \setminus \bigcup_{g \in G} T^g) \cup \{1\}$.

1. Show that $|G| = n^2 - n$. (3 pts.)

2. Show that |T| = n - 1. (3 pts.)

3. Show that $T^{g} \cap T = 1$ if $g \notin T$. (3 pts.)

4. Show that |N| = n. (3 pts.)

5. Show that $N \setminus \{1\}$ is the set of elements of *G* that does not fix a point of *X*. Conclude that *N* is a normal subset of *G*. (4 pts.)

6. Show that if $n \in N \setminus \{1\}$, then $C_G(n) \subseteq N$. (4 pts.)

7. Show that $N \setminus \{1\}$ is one conjugacy class. (5 pts.)

8. Find the size of $C_G(n)$ for $n \in N$. (5 pts.)

9. Conclude that *N* is an abelian group. (5 pts.)

10. Show that N is an elementary abelian group. (7 pts.)

11. Show that $G = N \rtimes T$. (This means that N is a normal subgroup of G, G = NT and $N \cap T = \{1\}$). (2 pts.)

12. Show that *G* has always an involution. (3 pts.)

- **13.** Show that *T* has an involution iff *n* is odd. (3 pts.)
- 14. Show that *N* has an involution iff *n* is even. (3 pts.)

15. Show that *T* has at most one involution, in which case this involution must be central in *T*. (Hint: Assume *T* has two involutions *i* and *j*. Let $y \neq x$ and let *g* carry (y, iy) onto (y, jy). Then ij^g fixes the points *y* and *iy* and *g* fixes *x* and *y*). (6 pts.)

16. Show that *G* is a group of exponent some prime.