Algebra II, Mitterm

April 4, 2013
Ali Nesin

Let G be a sharply 2 -transitive group acting on a set X of size n. Let $x \in X, T=$ G_{x} and $N=\left(G \backslash \bigcup_{g \in G} T^{g}\right) \cup\{1\}$.

1. Show that $|G|=n^{2}-n$. (3 pts.)
2. Show that $|T|=n-1$. (3 pts.)
3. Show that $T^{g} \cap T=1$ if $g \notin T$. (3 pts.)
4. Show that $|N|=n$. (3 pts.)
5. Show that $N \backslash\{1\}$ is the set of elements of G that does not fix a point of X. Conclude that N is a normal subset of G. (4 pts.)
6. Show that if $n \in N \backslash\{1\}$, then $\mathrm{C}_{G}(n) \subseteq N$. (4 pts.)
7. Show that $N \backslash\{1\}$ is one conjugacy class. (5 pts .)
8. Find the size of $\mathrm{C}_{G}(n)$ for $n \in N$. (5 pts .)
9. Conclude that N is an abelian group. (5 pts.)
10. Show that N is an elementary abelian group. (7 pts.)
11. Show that $G=N \rtimes T$. (This means that N is a normal subgroup of $G, G=$ $N T$ and $N \cap T=\{1\}$). (2 pts.)
12. Show that G has always an involution. (3 pts.)
13. Show that T has an involution iff n is odd. (3 pts.)
14. Show that N has an involution iff n is even. (3 pts.)
15. Show that T has at most one involution, in which case this involution must be central in T. (Hint: Assume T has two involutions i and j. Let $y \neq x$ and let g carry $(y, i y)$ onto $(y, j y)$. Then $i j^{g}$ fixes the points y and $i y$ and g fixes x and y). (6 pts.)
16. Show that G is a group of exponent some prime.
