Algebra

(Math 211 for CS) Final Exam January 1999 Ali Nesin & Özlem Beyarslan

1. Show that if A is an abelian group then End(A), the ring of homomorphisms from A into A, is a ring under + and o.

2. Is the ring $\text{End}(\mathbb{Z} \times \mathbb{Z})$ commutative?

3. What is Hom($\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$)? More generally, what is Hom($\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$)? How many elements does it have?

4. Find the kernel and the image of the group homomorphism,

given by,

 $\varphi(x, y) = x + y.$

 $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$

5. Let

 $\phi:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}\times\mathbb{Z}$

given by,

 $\varphi(x, y) = (x + y, x - y).$

Find φ^n for $n \in \mathbb{N}$. Show that each of the φ^n is an automorphism.

6. Show that $X^3 + 2X + 1$ is an irreducible polynomial of the ring $\mathbf{F}_5[X]$, but not of $\mathbf{F}_{13}[X]$. (Recall that if *p* is a prime number, \mathbf{F}_p is the field $\mathbb{Z}/p\mathbb{Z}$).

7. Show that $\langle 5, X + 2 \rangle$ is a maximal ideal of the ring of polynomials $\mathbb{Z}[X]$.

8. For G a group, define,

 $Z(G) = \{z \in G : \text{ for all } g \in G, gz = zg\}$

and

 $Z_2(G) = \{z \in G : \text{ for all } g \in G, gzg^{-1}z^{-1} \in Z(G)\}.$ Show that Z(G) and $Z_2(G)$ are normal subgroups of G. Show that $Z_2(G)/Z(G) = Z(G/Z(G)).$