Math 121

Analysis Retake Corrections
Fall 2012
Ali Nesin
January 31, 2013

1. Let $\left(a_{n}\right)_{n}$ be a convergent sequence of real numbers. Suppose that $5 a_{n} / 2 \in$ \mathbb{N} for all n. What can you say about the sequence $\left(a_{n}\right)_{n}$ and $\lim _{n \rightarrow \infty} a_{n}$?
2. Decide the convergence of the series

$$
\sum_{n} \frac{1}{\sqrt{\left|n^{2}-2\right|}}, \sum_{n} \frac{1}{\sqrt{n^{2}+1}}, \sum_{n} \frac{1}{\sqrt{\left|n^{4}-6\right|}}
$$

3. Suppose that $\left(a_{n}\right)_{n}$ is a positive and decreasing sequence and that the series $\sum_{n} a_{n}$ is convergent. Show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
4. Find a positive sequence $\left(a_{n}\right)_{n}$ such that the series $\sum_{n} a_{n}$ is convergent but that $\lim _{n \rightarrow \infty} n a_{n} \neq 0$.
5. Let $\left(a_{n}\right)_{n}$ be a sequence. Suppose that $\sum_{n=1}^{\infty}\left|a_{n}-a_{n+1}\right|$ converges. Such a sequence is called of bounded variation. Show that a sequence of bounded variation converges.
