Algebra Final Fall 2013 Ali Nesin

Throughout G denotes a group.

For $X, Y \subseteq G$, let [X, Y] denote the subgroup generated by all the elements of the form

$$[x, y] := x^{-1}y^{-1}xy$$

for $x \in X$ and $y \in Y$.

- 1. Show that [X, Y] = [Y, X].
- 2. Show that if *H* and *K* are subgroups of *G* that normalize each other then $[H, K] \leq H \cap K$.
- 3. Show that for $x, y, z \in G$, $[x, yz] = [x, z][x, y]^z$ and $[xy, z] = [x, z]^y[y, z]$. Conclude that if $H, K \leq G$, then H and K normalize the subgroup [H, K]. Conclude also that if $A \leq G$ is an abelian subgroup and if $g \in N_G(A)$, then the map $ad(g) : A \to A$ defined by ad(g)(a) = [a, g] is a group homomorphism whose kernel is $C_A(g)$.

We define G^n and $G^{(n)}$ by induction on n: $G^0 = G^{(0)} = G$, $G^{n+1} = [G, G^n]$, $G^{(n+1)} = [G^{(n)}, G^{(n)}]$. We let $G' = G^1 = G^{(1)}$.

- 4. Show that $G^{n+1} \le G^n$ and that $G^{(n+1)} \le G^{(n)}$. Show also that G^n and $G^{(n)}$ are characteristic subgroups of G.
- 5. Show that if $H \triangleleft G$ and G/H is abelian then $G' \subseteq H$. Conversely show that if $G' \subseteq H \subseteq G$, then $H \triangleleft G$ and G/H is abelian.
 - 6. Show that $[G^i, G^j] \le G^{i+j+1}$ and $G^{(i)} \le G^i$ for all i, j.

We define $Z_n(G)$ by induction on n as follows: $Z_n(G) = 1$ if $n \le 0$ and for $n \ge 0$, $Z_{n+1}(G)$ is the unique subgroup of G that contains $Z_n(G)$ such that $Z(G/Z_n(G)) = Z_{n+1}(G)/Z_n(G)$.

- 7. Show that $Z_n(G)$ is a characteristic subgroup of G for all n.
- 8. Show that $[G^i, Z_i] \le Z_{i-i-1}$ and that $[Z^{i+1}, G^i] = 1$ for all i, j.

A group is said to be *solvable* if $G^{(n)} = 1$ for some n. If $G^{(n)} = 1$ but that $G^{(n-1)} \neq 1$, G is said to be solvable of class n.

A group is said to be *nilpotent* if $G^n = 1$ for some n. If $G^n = 1$ but that $G^{n-1} \neq 1$, G is said to be *nilpotent of class n*.

- 9. Show that a nilpotent group is solvable.
- 10. Let G be nilpotent of class n. Show that $G^{n-i} \leq Z_i$. Conclude that $G = Z_n$.
- 11. Conversely, assume that $G = \mathbb{Z}_n$. Show that $G^i \leq \mathbb{Z}_{n-i}$. Conclude that G is nilpotent of class n.
 - 12. Show that *G* is nilpotent of class *n* if and only if $Z_n = G$ and $Z_{n-1} \neq G$.