Algebra Final

Fall 2013
Ali Nesin
Throughout G denotes a group.
For $X, Y \subseteq G$, let $[X, Y]$ denote the subgroup generated by all the elements of the form

$$
[x, y]:=x^{-1} y^{-1} x y
$$

for $x \in X$ and $y \in Y$.

1. Show that $[X, Y]=[Y, X]$.
2. Show that if H and K are subgroups of G that normalize each other then $[H, K] \leq H \cap K$.
3. Show that for $x, y, z \in G,[x, y z]=[x, z][x, y]^{z}$ and $[x y, z]=[x, z]^{y}[y, z]$. Conclude that if $H, K \leq G$, then H and K normalize the subgroup [H, K]. Conclude also that if $A \leq G$ is an abelian subgroup and if $g \in \mathrm{~N}_{G}(A)$, then the map $\operatorname{ad}(g): A \rightarrow A$ defined by $\operatorname{ad}(g)(a)=[a, g]$ is a group homomorphism whose kernel is $\mathrm{C}_{A}(g)$.

We define G^{n} and $G^{(n)}$ by induction on n :
$G^{0}=G^{(0)}=G, G^{n+1}=\left[G, G^{n}\right], G^{(n+1)}=\left[G^{(n)}, G^{(n)}\right]$.
We let $G^{\prime}=G^{1}=G^{(1)}$.
4. Show that $G^{n+1} \leq G^{n}$ and that $G^{(n+1)} \leq G^{(n)}$. Show also that G^{n} and $G^{(n)}$ are characteristic subgroups of G.
5. Show that if $H \triangleleft G$ and G / H is abelian then $G^{\prime} \leq H$. Conversely show that if $G^{\prime} \leq H \leq$ G, then $H \triangleleft G$ and G / H is abelian.
6. Show that $\left[G^{i}, G^{j}\right] \leq G^{i+j+1}$ and $G^{(i)} \leq G^{i}$ for all i, j.

We define $Z_{n}(G)$ by induction on n as follows: $Z_{n}(G)=1$ if $n \leq 0$ and for $n \geq 0, Z_{n+1}(G)$ is the unique subgroup of G that contains $Z_{n}(G)$ such that $Z\left(G / Z_{n}(G)\right)=Z_{n+1}(G) / Z_{n}(G)$.
7. Show that $Z_{n}(G)$ is a characteristic subgroup of G for all n.
8. Show that $\left[G^{i}, Z_{j}\right] \leq Z_{j-i-1}$ and that $\left[Z^{i+1}, G^{i}\right]=1$ for all i, j.

A group is said to be solvable if $G^{(n)}=1$ for some n. If $G^{(n)}=1$ but that $G^{(n-1)} \neq 1, G$ is said to be solvable of class n.

A group is said to be nilpotent if $G^{n}=1$ for some n. If $G^{n}=1$ but that $G^{n-1} \neq 1, G$ is said to be nilpotent of class n.
9. Show that a nilpotent group is solvable.
10. Let G be nilpotent of class n. Show that $G^{n-i} \leq Z_{i}$. Conclude that $G=Z_{n}$.
11. Conversely, assume that $G=\mathrm{Z}_{n}$. Show that $G^{i} \leq \mathrm{Z}_{n-i}$. Conclude that G is nilpotent of class n.
12. Show that G is nilpotent of class n if and only if $\mathrm{Z}_{n}=G$ and $Z_{n-1} \neq G$.

