Algebra I Final

Ali Nesin

January 15, 2013

- 1. Find all groups which have exactly three subgroups.
- 2. Find all groups which have exactly four subgroups.
- 3. Find all groups which have exactly five subgroups.
- 4. Find $Aut(D_{2n})$. Here D_{2n} is the dihedral group with 2n elements.
- 5. The set of all rotation of \mathbb{R} around O is a group denoted $SO_3(\mathbb{R})$. Show that $SO_3(\mathbb{R})$ is not abelian.
- 6. Let *R* be a ring. Let \wp be the set of prime ideals of *R*. For each subset $X \subseteq R$, let

$$U_X = \{ l \in \mathcal{D} : X \not\subseteq l \}.$$

Show that $\tau = \{U_X : X \subseteq R\}$ defines a topology on *R*. Show that this topology is compact.

7. Let *R* be a ring and

be a commutative diagram of *R*-modules and R-module homomorphisms with exact rows (i.e. Im λ = Ker μ and the same for the second row). Show the following:

- a. If α , γ and λ' are monomorphisms then so is β .
- b. If α , γ and μ are epimorphisms then so is β .
- $\text{c.} \quad (\text{Im }\beta \cap \text{Im }\lambda')/\text{Im }(\lambda' \circ \alpha) \ \approx \text{Ker}(\mu' \circ \beta)/(\text{Ker }\mu \cap \text{Ker }\beta).$