2012 Fall Algebra I Final

Ali Nesin

22 Ocak 2012

1. Find $\operatorname{Aut}(\mathbb{Q}^*)$. (10 pts.)

Solution: Let $\phi \in \operatorname{Aut}(\mathbb{Q}^*)$. It is easy to show that $\phi(1) = 1$ and $\phi(-1) = -1$. Since $\phi(xy) = \phi(x)\phi(y)$, and since every element of \mathbb{Q}^* can be written uniquely as

$$\epsilon \prod_{i=1}^{k} p_i^{n_i}$$

for some unique $\epsilon = \pm 1$, $k \in \mathbb{N}$, distinct positive primes p_i and $n_i \in \mathbb{Z} \setminus \{0\}$, it is enough to find the values of ϕ at the positive primes p. Since ϕ is a bijection, the image of a prime can only be a prime. Thus ϕ permutes the primes among each other. (But be aware that the image of a positive prime can be a negative prime).

Thus let P be the set of positive primes. For each $f \in \text{Sym } P$ and each $\alpha \in \text{Func}(P, \{1, -1\}) \simeq \prod_{P} \{1, -1\}$ we obtain an automorphism $\phi_{f,\alpha}$ of \mathbb{Q}^* by

$$\phi_{f,\alpha}\left(\epsilon\prod_{i=1}^k p_i^{n_i}\right) = \epsilon\prod_{i=1}^k \alpha(p_i)^{n_i} f(p_i)^{n_i}.$$

It is also clear from the discussion above that each $\phi \in Aut(\mathbb{Q}^*)$ is obtained this way. One can check that

$$\phi_{f,\alpha} \circ \phi_{g,\beta} = \phi_{f \circ g,\alpha\beta}$$

Hence

$$Aut(\mathbb{Q}^{\star}) \simeq \operatorname{Sym} P \times \prod_{P} \{1, -1\}.$$

2. Find all ideals of the ring \mathbb{Z}_p of *p*-adic integers. (10 pts.)

Solution: We know that an element of \mathbb{Z}_p can be uniquely written (or represented) as $\sum_i a_i p^i$ for $a_i \in \{0, 1, \dots, p-1\}$ and that such an element is invertible iff $a_0 \neq 0$. Let $0 \neq I \leq \mathbb{Z}_p$. Let $n = \min\{\operatorname{val}_p(x) : x \in I\}$. Let $a \in I$ be such that $\operatorname{val}_p(a) = n$. Then $a = p^n \sum_i a_i p^i$ with $a_0 \neq 0$. Thus $\sum_i a_i p^i$ is invertible in \mathbb{Z}_p . It follows that $p^n \in I$. Now it is easy to show that $I = p^n \mathbb{Z}_p$.

3. Find a domain that contains \mathbb{Z}_p as a subring and also a square root of p. (6 pts.)

Solution: The ring $\mathbb{Z}_p[X]/\langle X^2 - p \rangle$ is a ring that contains a squareroot of p. Since $X^2 - p$ is irreducible in $\mathbb{Z}_p[X]$, this ring is a domain.

4a. Let G be a finite group and $A \leq \operatorname{Aut} G$. For $g \in G$ show that |Ag| divides |A|. (10 pts.)

4b. Let everything be as above. Show that for $g, h \in G$ either Ag = Ah or $Ag \cap Ah = \emptyset$. (5 pts.)

4c. Let p be a prime, G be a finite p-group and $A \subset \operatorname{Aut} G$, also pa p-group. Show that there is an element $1 \neq g \in G$ which is fixed by all the elements of A. (6 pts.)

Proofs: a. Let $B = \{\alpha \in A : \alpha(g) = g\}$. Then $B \subseteq A$. Let A/B denote the left coset space. The rule $\alpha B \mapsto \alpha(g)$ gives rise to a well-defined map (to be checked) from A/B into Ag. Furthermore this map is 1-1 and onto. Hence |Ag| = |A/B| and so |Ag| divides |A|.

b. Let $\alpha(g) = \beta(h) \in Ag \cap Ah$. Then $Ag = (A\alpha)g = A(\alpha g) = A(\beta h) = (A\beta)h = Ah$.

c. By part b, G is a union of the disjoint orbits Ag for some $g \in G$. By part a, Ag is a power of p, including $p^0 = 1$, because $A1 = \{1\}$ has only one element. Thus $\{g \in G : |Ag| = 1\}$ must have a nonzero multiple of p many elements.

5. Let V be a vector space and U and W subspaces of V. Show that $\dim(U+W) = \dim U + \dim W - \dim(U \cap V)$. (15 pts.)

Proof: Consider the map $U \times V \longrightarrow U + W$ given by $(u, w) \mapsto u + w$. This is a linear map which is onto and whose kernel is

$$\{(u,w) \in U \times W : u + w = 0\} = \{(u,-u) : u \in U \cap W\} \simeq U \cap W.$$

The result follows.

6. An ordered ring is a ring R together with a total order < such that

ORD1. $x < y \implies x + z < y + z$.

ORD2. x < y and $0 < z \implies xz < yz$.

a. Show that in an ordered ring if x < y then -y < -x. (2 pts.)

b. Show that in an ordered ring for all $x, 0 \le x^2$. (4 pts.)

c. Show that an ordered ring is a domain of characteristic 0 and that -1 cannot be a sum of squares. (10 pts.)

d. Given an ordered ring R, let $P = \{x \in R : 0 < x\}$ (the positive cone). Show that P is closed under addition and multiplication, that it does not contain 0 and that $R = (-P) \cup \{0\} \cup P$. Show that if R is a field then P is also closed under inversion. (2 + 4 pts.)

e. Let R be a ring and $P \subseteq R$ be a subset that satisfies the properties listed above. Define x < y by $y - x \in P$. Show that R becomes an ordered ring. (4 pts.)

f. Let R be a domain and S be the set of finite sums of squares of R excluding 0. Show that S is closed under addition and multiplication. (2 pts.)

g. Let K = R be a ring in which -1 is not a sum of squares. Let S be as above. Show that S can be extended to a set P which is closed under addition and multiplication, which does not contain 0 and for which $R = (-P) \cup \{0\} \cup P$. (10 pts.)

Proofs: a. It is enough to add -x - y to both sides of the inequality x < y.

b. If 0 < x or 0 = x that is clear by ORD2. Assume x < 0. By the first part 0 < -x. So $0 < (-x)^2 = x^2$.

c. By part b, $0 < 1^2 = 1$. So by ORD 1, 1 < 2 and 2 < 3 etc. So for no natural number $n \neq 0$ (in N) can be have n = 0 in the ring because otherwise we would have

$$0 < 1 < 2 < \ldots < n - 1 < n = 0$$

and 0 < 0 by transitivity of the order. Thus \mathbb{R} had characteristic 0.

No nonzero zerodivisors: If x and y are > 0 then xy > 0. The other cases are similar by considering $\pm x$ and $\pm y$.

Since 1 > 0 we must have -1 < 0, so by part b, -1 cannot be a sum of squares.

d. The first part is clear. For the second part. Assume $a \in P$. Then $a^{-1} = a \cdot (a^{-1})^2 \in P$ because squares are in P.

e. We first show that we have a total order. $x \not\leq x$ because $0 \notin P$. Transitivity follows from the fact that P is closed under addition. The order is total because $R = (-P) \cup \{0\} \cup P$.

ORD1 is clear. ORD2 follows from the fact that P is closed under multiplication.

f. Clear.

g. Let $Z = \{P \subseteq R : S \subset P, S \text{ is closed under addition and multiplication and <math>0 \notin S\}$. Order Z by inclusion. Z is obviously closed under the union of chains. Thus by Zorn's Lemma Z has a maximal element, say P. We proceed to show that $R = (-P) \cup \{0\} \cup P$. Assume not. Let $x \in R$ be an element not in this union. Let

$$P_1 = P + xP$$

Then $P \subset P_1$ and P_1 is closed under addition and multiplication because $x^2 \in S \subset P$. Furthermore $0 \notin P_1$ because otherwise by part d, -x would be in P, i.e. x would be in -P, a contradiction.