2012 Fall Algebra I Final

Ali Nesin

22 Ocak 2012

1. Find $\operatorname{Aut}\left(\mathbb{Q}^{\star}\right)$. (10 pts . $)$

Solution: Let $\phi \in \operatorname{Aut}\left(\mathbb{Q}^{*}\right)$. It is easy to show that $\phi(1)=1$ and $\phi(-1)=-1$. Since $\phi(x y)=$ $\phi(x) \phi(y)$, and since every element of \mathbb{Q}^{\star} can be written uniquely as

$$
\epsilon \prod_{i=1}^{k} p_{i}^{n_{i}}
$$

for some unique $\epsilon= \pm 1, k \in \mathbb{N}$, distinct positive primes p_{i} and $n_{i} \in \mathbb{Z} \backslash\{0\}$, it is enough to find the values of ϕ at the positive primes p. Since ϕ is a bijection, the image of a prime can only be a prime. Thus ϕ permutes the primes among each other. (But be aware that the image of a positive prime can be a negative prime).

Thus let P be the set of positive primes. For each $f \in \operatorname{Sym} P$ and each $\alpha \in \operatorname{Func}(P,\{1,-1\}) \simeq$ $\prod_{P}\{1,-1\}$ we obtain an automorphism $\phi_{f, \alpha}$ of \mathbb{Q}^{\star} by

$$
\phi_{f, \alpha}\left(\epsilon \prod_{i=1}^{k} p_{i}^{n_{i}}\right)=\epsilon \prod_{i=1}^{k} \alpha\left(p_{i}\right)^{n_{i}} f\left(p_{i}\right)^{n_{i}}
$$

It is also clear from the discussion above that each $\phi \in \operatorname{Aut}\left(\mathbb{Q}^{\star}\right)$ is obtained this way.
One can check that

$$
\phi_{f, \alpha} \circ \phi_{g, \beta}=\phi_{f \circ g, \alpha \beta}
$$

Hence

$$
A u t\left(\mathbb{Q}^{\star}\right) \simeq \operatorname{Sym} P \times \prod_{P}\{1,-1\} .
$$

2. Find all ideals of the ring \mathbb{Z}_{p} of p-adic integers. (10 pts .)

Solution: We know that an element of \mathbb{Z}_{p} can be uniquely written (or represented) as $\sum_{i} a_{i} p^{i}$ for $a_{i} \in\{0,1, \ldots, p-1\}$ and that such an element is invertible iff $a_{0} \neq 0$. Let $0 \neq I \unlhd \mathbb{Z}_{p}$. Let $n=\min \left\{\operatorname{val}_{p}(x): x \in I\right\}$. Let $a \in I$ be such that $\operatorname{val}_{p}(a)=n$. Then $a=p^{n} \sum_{i} a_{i} p^{i}$ with $a_{0} \neq 0$. Thus $\sum_{i} a_{i} p^{i}$ is invertible in \mathbb{Z}_{p}. It follows that $p^{n} \in I$. Now it is easy to show that $I=p^{n} \mathbb{Z}_{p}$.
3. Find a domain that contains \mathbb{Z}_{p} as a subring and also a square root of p. (6 pts .)

Solution: The ring $\mathbb{Z}_{p}[X] /\left\langle X^{2}-p\right\rangle$ is a ring that contains a squareroot of p. Since $X^{2}-p$ is irreducible in $\mathbb{Z}_{p}[X]$, this ring is a domain.

4a. Let G be a finite group and $A \leq$ Aut G. For $g \in G$ show that $|A g|$ divides $|A|$. (10 pts.)
4b. Let everything be as above. Show that for $g, h \in G$ either $A g=A h$ or $A g \cap A h=\emptyset$. (5 pts.)
4c. Let p be a prime, G be a finite p-group and $A \subset$ Aut G, alsop a p-group. Show that there is an element $1 \neq g \in G$ which is fixed by all the elements of A. (6 pts .)

Proofs: a. Let $B=\{\alpha \in A: \alpha(g)=g\}$. Then $B \subseteq A$. Let A / B denote the left coset space. The rule $\alpha B \mapsto \alpha(g)$ gives rise to a well-defined map (to be checked) from A / B into $A g$. Furthermore this map is 1-1 and onto. Hence $|A g|=|A / B|$ and so $|A g|$ divides $|A|$.
b. Let $\alpha(g)=\beta(h) \in A g \cap A h$. Then $A g=(A \alpha) g=A(\alpha g)=A(\beta h)=(A \beta) h=A h$.
c. By part b, G is a union of the disjoint orbits $A g$ for some $g \in G$. By part a, $A g$ is a power of p, including $p^{0}=1$, because $A 1=\{1\}$ has only one element. Thus $\{g \in G:|A g|=1\}$ must have a nonzero multiple of p many elements.
5. Let V be a vector space and U and W subspaces of V. Show that $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-$ $\operatorname{dim}(U \cap V) .(15 \mathrm{pts}$.

Proof: Consider the map $U \times V \longrightarrow U+W$ given by $(u, w) \mapsto u+w$. This is a linear map which is onto and whose kernel is

$$
\{(u, w) \in U \times W: u+w=0\}=\{(u,-u): u \in U \cap W\} \simeq U \cap W
$$

The result follows.
6. An ordered ring is a ring R together with a total order $<$ such that

ORD1. $x<y \Longrightarrow x+z<y+z$.
ORD2. $x<y$ and $0<z \Longrightarrow x z<y z$.
a. Show that in an ordered ring if $x<y$ then $-y<-x$. (2 pts.)
b. Show that in an ordered ring for all $x, 0 \leq x^{2}$. (4 pts .)
c. Show that an ordered ring is a domain of characteristic 0 and that -1 cannot be a sum of squares. (10 pts.)
d. Given an ordered ring R, let $P=\{x \in R: 0<x\}$ (the positive cone). Show that P is closed under addition and multiplication, that it does not contain 0 and that $R=(-P) \cup\{0\} \cup P$. Show that if R is a field then P is also closed under inversion. $(2+4$ pts.)
e. Let R be a ring and $P \subseteq R$ be a subset that satisfies the properties listed above. Define $x<y$ by $y-x \in P$. Show that R becomes an ordered ring. (4 pts.)
f. Let R be a domain and S be the set of finite sums of squares of R excluding 0 . Show that S is closed under addition and multiplication. (2 pts.)
g. Let $K=R$ be a ring in which -1 is not a sum of squares. Let S be as above. Show that S can be extended to a set P which is closed under addition and multiplication, which does not contain 0 and for which $R=(-P) \cup\{0\} \cup P$. (10 pts.)

Proofs: a. It is enough to add $-x-y$ to both sides of the inequality $x<y$.
b. If $0<x$ or $0=x$ that is clear by ORD2. Assume $x<0$. By the first part $0<-x$. So $0<(-x)^{2}=x^{2}$.
c. By part b, $0<1^{2}=1$. So by ORD $1,1<2$ and $2<3$ etc. So for no natural number $n \neq 0$ (in \mathbb{N}) can ve have $n=0$ in the ring because otherwise we would have

$$
0<1<2<\ldots<n-1<n=0
$$

and $0<0$ by transitivity of the order. Thus \mathbb{R} had characteristic 0 .
No nonzero zerodivisors: If x and y are >0 then $x y>0$. The other cases are similar by considering $\pm x$ and $\pm y$.

Since $1>0$ we must have $-1<0$, so by part $b,-1$ cannot be a sum of squares.
d. The first part is clear. For the second part. Assuma $a \in P$. Then $a^{-1}=a \cdot\left(a^{-1}\right)^{2} \in P$ because squares are in P.
e. We first show that we have a total order. $x \nless x$ because $0 \notin P$. Transitivity follows from the fact that P is closed under addition. The order is total because $R=(-P) \cup\{0\} \cup P$.

ORD1 is clear. ORD2 follows from the fact that P is closed under multiplication.
f. Clear.
g. Let $Z=\{P \subseteq R: S \subset P, S$ is closed under addtion and multiplication and $0 \notin S\}$. Order Z by inclusion. Z is obviously closed under the union of chains. Thus by Zorn's Lemma Z has a maximal element, say P. We proceed to show that $R=(-P) \cup\{0\} \cup P$. Assume not. Let $x \in R$ be an element not in this union. Let

$$
P_{1}=P+x P
$$

Then $P \subset P_{1}$ and P_{1} is closed under addition and multiplication because $x^{2} \in S \subset P$. Furthermore $0 \notin P_{1}$ because otherwise by part $\mathrm{d},-x$ would be in P, i.e. x would be in $-P$, a contradiction.

