
2012 Fall Algebra I Final

Ali Nesin

22 Ocak 2012

1. Find Aut(Q⋆). (10 pts.)

Solution: Let ϕ ∈ Aut(Q⋆). It is easy to show that ϕ(1) = 1 and ϕ(−1) = −1. Since ϕ(xy) =
ϕ(x)ϕ(y), and since every element of Q⋆ can be written uniquely as

ϵ
k∏

i=1

pni
i

for some unique ϵ = ±1, k ∈ N, distinct positive primes pi and ni ∈ Z \ {0}, it is enough to find the
values of ϕ at the positive primes p. Since ϕ is a bijection, the image of a prime can only be a prime.
Thus ϕ permutes the primes among each other. (But be aware that the image of a positive prime can
be a negative prime).

Thus let P be the set of positive primes. For each f ∈ SymP and each α ∈ Func(P, {1,−1}) ≃∏
P {1,−1} we obtain an automorphism ϕf,α of Q⋆ by

ϕf,α

(
ϵ

k∏
i=1

pni
i

)
= ϵ

k∏
i=1

α(pi)
nif(pi)

ni .

It is also clear from the discussion above that each ϕ ∈ Aut(Q⋆) is obtained this way.
One can check that

ϕf,α ◦ ϕg,β = ϕf◦g,αβ .

Hence
Aut(Q⋆) ≃ SymP ×

∏
P

{1,−1}.

2. Find all ideals of the ring Zp of p-adic integers. (10 pts.)
Solution: We know that an element of Zp can be uniquely written (or represented) as

∑
i aip

i

for ai ∈ {0, 1, . . . , p − 1} and that such an element is invertible iff a0 ̸= 0. Let 0 ̸= I E Zp. Let
n = min{valp(x) : x ∈ I}. Let a ∈ I be such that valp(a) = n. Then a = pn

∑
i aip

i with a0 ̸= 0. Thus∑
i aip

i is invertible in Zp. It follows that p
n ∈ I. Now it is easy to show that I = pnZp.

3. Find a domain that contains Zp as a subring and also a square root of p. (6 pts.)
Solution: The ring Zp[X]/⟨X2 − p⟩ is a ring that contains a squareroot of p. Since X2 − p is

irreducible in Zp[X], this ring is a domain.

4a. Let G be a finite group and A ≤ AutG. For g ∈ G show that |Ag| divides |A|. (10 pts.)
4b. Let everything be as above. Show that for g, h ∈ G either Ag = Ah or Ag ∩Ah = ∅. (5 pts.)
4c. Let p be a prime, G be a finite p-group and A ⊂ AutG, alsop a p-group. Show that there is an

element 1 ̸= g ∈ G which is fixed by all the elements of A. (6 pts.)
Proofs: a. Let B = {α ∈ A : α(g) = g}. Then B ⊆ A. Let A/B denote the left coset space. The

rule αB 7→ α(g) gives rise to a well-defined map (to be checked) from A/B into Ag. Furthermore this
map is 1-1 and onto. Hence |Ag| = |A/B| and so |Ag| divides |A|.

b. Let α(g) = β(h) ∈ Ag ∩Ah. Then Ag = (Aα)g = A(αg) = A(βh) = (Aβ)h = Ah.
c. By part b, G is a union of the disjoint orbits Ag for some g ∈ G. By part a, Ag is a power of p,

including p0 = 1, because A1 = {1} has only one element. Thus {g ∈ G : |Ag| = 1} must have a nonzero
multiple of p many elements.
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5. Let V be a vector space and U and W subspaces of V . Show that dim(U +W ) = dimU +dimW −
dim(U ∩ V ). (15 pts.)

Proof: Consider the map U × V −→ U +W given by (u,w) 7→ u+w. This is a linear map which is
onto and whose kernel is

{(u,w) ∈ U ×W : u+ w = 0} = {(u,−u) : u ∈ U ∩W} ≃ U ∩W.

The result follows.

6. An ordered ring is a ring R together with a total order < such that
ORD1. x < y =⇒ x+ z < y + z.
ORD2. x < yand 0 < z =⇒ xz < yz.
a. Show that in an ordered ring if x < y then −y < −x. (2 pts.)
b. Show that in an ordered ring for all x, 0 ≤ x2. (4 pts.)
c. Show that an ordered ring is a domain of characteristic 0 and that −1 cannot be a sum of squares.

(10 pts.)
d. Given an ordered ring R, let P = {x ∈ R : 0 < x} (the positive cone). Show that P is closed

under addition and multiplication, that it does not contain 0 and that R = (−P ) ∪ {0} ∪ P . Show that
if R is a field then P is also closed under inversion. (2 + 4 pts.)

e. Let R be a ring and P ⊆ R be a subset that satisfies the properties listed above. Define x < y by
y − x ∈ P . Show that R becomes an ordered ring. (4 pts.)

f. Let R be a domain and S be the set of finite sums of squares of R excluding 0. Show that S is
closed under addition and multiplication. (2 pts.)

g. Let K = R be a ring in which −1 is not a sum of squares. Let S be as above. Show that S can be
extended to a set P which is closed under addition and multiplication, which does not contain 0 and for
which R = (−P ) ∪ {0} ∪ P . (10 pts.)

Proofs: a. It is enough to add −x− y to both sides of the inequality x < y.
b. If 0 < x or 0 = x that is clear by ORD2. Assume x < 0. By the first part 0 < −x. So

0 < (−x)2 = x2.
c. By part b, 0 < 12 = 1. So by ORD 1, 1 < 2 and 2 < 3 etc. So for no natural number n ̸= 0 (in N)

can ve have n = 0 in the ring because otherwise we would have

0 < 1 < 2 < . . . < n− 1 < n = 0

and 0 < 0 by transitivity of the order. Thus R had characteristic 0.
No nonzero zerodivisors: If x and y are > 0 then xy > 0. The other cases are similar by considering

±x and ±y.
Since 1 > 0 we must have −1 < 0, so by part b, −1 cannot be a sum of squares.
d. The first part is clear. For the second part. Assuma a ∈ P . Then a−1 = a · (a−1)2 ∈ P because

squares are in P .
e. We first show that we have a total order. x ̸< x because 0 /∈ P . Transitivity follows from the fact

that P is closed under addition. The order is total because R = (−P ) ∪ {0} ∪ P .
ORD1 is clear. ORD2 follows from the fact that P is closed under multiplication.
f. Clear.
g. Let Z = {P ⊆ R : S ⊂ P, S is closed under addtion and multiplication and 0 ̸∈ S}. Order Z by

inclusion. Z is obviously closed under the union of chains. Thus by Zorn’s Lemma Z has a maximal
element, say P . We proceed to show that R = (−P ) ∪ {0} ∪ P . Assume not. Let x ∈ R be an element
not in this union. Let

P1 = P + xP.

Then P ⊂ P1 and P1 is closed under addition and multiplication because x2 ∈ S ⊂ P . Furthermore
0 ̸∈ P1 because otherwise by part d, −x would be in P , i.e. x would be in −P , a contradiction.


