MATH 113 Self Study Material 2 Set Theory

Selçuk Demir and Haydar Göral

December 26, 2008

Number Theory

1) Let a and $b \in \mathbb{Z}$ with one of them is nonzero. We say that d is the greatest common divisior of a and b which is denoted by gcd(a, b) if i) d > 0

ii) d divides both a and b

iii) if c divides both a and b then c divides d

a) Show that gcd(a, b) exists.

b) Show that there are integers x and y such that ax + by = d.

c) Let a = 23023 and b = 24871. Find d, x and y as above.

d) Given integers $a_1, ..., a_n$ define gcd of $a_1, ..., a_n$.

2) Let $a \in \mathbb{Z}$ and p be a prime number which does not divide a. Show that gcd(a, p) = 1 which means they are relatively prime or coprime.

3) Let p be a prime number. Show that if p divides the product ab then p divides either a or b.

4) We say that $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible if there is a $b \in \mathbb{Z}/n\mathbb{Z}$ such that ab = 1.

a) Show that $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible if and only if a and n are relatively prime.

b) Let n = 35 find the inverse of 11.

c) Show that n is prime if and only all elements except 0 in $\mathbb{Z}/n\mathbb{Z}$ are invertible.

d) Find the invertible elements of $(\mathbb{Z}/72\mathbb{Z})$. This set of invertible elements is denoted by $(\mathbb{Z}/72\mathbb{Z})^*$.

e) Let p be a prime. Suppose that xy = 0 in $(\mathbb{Z}/p\mathbb{Z})$. Show that either x = 0

or y = 0. f) $(10\mathbb{Z} + 3) \cap (6\mathbb{Z} + 1) = n\mathbb{Z} + k$. Find n and k.

5) Using Fermat's Little Theorem, find the remainder when 37^{126} and 29^{29} are divided by 13.

6)For which primes p is $p^2 + 2$ also prime?

7)Let p_n denote the n^{th} prime number. Show that $p_{n+1} \leq p_1 \dots p_n + 1$. Deduce that $p_n \leq 2^{2^{n-1}}$.

8)Show that there are infinitely many primes p of the form 6k + 5. (Hint:Similar proof for there are infinitely many primes of the form 4k + 3)

9)Show that there are infinitely many x and $y \in \mathbb{N}$ such that x^x divides y^y but x does not divide y.

10)Calculate the sums
$$\sum_{k=0}^{n} \binom{n}{k} (-2)^{k}$$
 and $\sum_{k=0}^{n} k \binom{n}{k}$.

Set Theory

1) Let U be any non-empty set. Let $\phi(x)$ and $\psi(x)$ be two properties (of elements of U). Define

$$U_{\phi} = \{x \in U : \phi(x)\}$$
 and $U_{\psi} = \{x \in U : \psi(x)\}$

Express the following sets in terms of U_{ϕ} and U_{ψ}

a) $\{x \in U : \phi(x) \land \psi(x)\}$ b) $\{x \in U : \phi(x) \lor \psi(x)\}$

2) Let A and B be two disjoint sets. A set W is said to be a <u>connection</u> of A and B if the following conditions hold:

i) if $Z \in W$ then there are $x \in A$ and $y \in B$ such that $Z = \{x, y\}$. ii) For each $x \in A$ there is exactly one $y \in B$ such that $\{x, y\} \in W$. iii) For each $y \in B$ there is exactly one $x \in A$ such that $\{x, y\} \in W$.

Show that for any two disjoint sets A and B the collection $\Sigma(A, B)$ of all connections of A with B is a set.

3) Let A be a non-empty set, let $\equiv \subseteq A \times A$ be relation. Prove that \equiv is

an equicalance relation if and only if there exists a set Q and a surjection $\pi:A\to Q$ so that

$$x \equiv y \Longleftrightarrow \pi(x) = \pi(y).$$

4)Find a bijection between \mathbb{N} and \mathbb{Q} .

5)**Definition:** A subgroup of \mathbb{Z} is a subset of \mathbb{Z} which is closed under substraction.

Find all subgroups of \mathbb{Z} .

6)Let K be a field. Show that K has only two ideal namely 0 and K itself.

7) Find all functions f from N to itself which satisfies f(x+y) = f(x) + f(y).

8)Filters

Definition: Let X be a set. A <u>filter</u> on X is a set \mathcal{F} of subsets of X that satisfies:

i) If $A \in \mathcal{F}$ and $A \subseteq B \subseteq X$, then $B \in \mathcal{F}$. ii) If A and B are in \mathcal{F} then $A \cap B \in \mathcal{F}$.

iii)
$$\emptyset \notin \mathcal{F}$$
 and $X \in \mathcal{F}$.

If A is a non empty fixed subset of X then the set $\mathcal{F}(A)$ of subsets of X that contains A is a filter on X. Such a filter is called a Principal Filter. If X is infinite then the set of cofinite subsets of X is a called a Frechet Filter. A maximal filter is called an <u>Ultrafilter</u>.

Fix a set X

a) Show that a principal filter $\mathcal{F}(A)$ on X is an ultrafilter if and only if A is a singleton.

b) Show that the Frechet filter (on an infinite set) can not be contained in a principal filter.

c) Let $(\mathcal{F}_i)_{i \in I}$ be a family of filters then $\bigcap \mathcal{F}_i$ is a filter.

d) Let \mathcal{F} be a set of subsets of X so that for any $A_1, \dots A_n \in \mathcal{F}$,

 $A_1 \cap \ldots \cap A_n \neq \emptyset$, then there is a filter that contains \mathcal{F} . Describe this filter in terms of \mathcal{F} .

e) Show that a filter \mathcal{F} is an ultrafilter if and only if for any $A \subseteq X$ either A, or A^c is in \mathcal{F} . Conclude that in an ultrafilter \mathcal{F} , if $A \cup B \in \mathcal{F}$ then either A or B is in \mathcal{F} .

f) Conclude that any ultrafilter on X that contains a finite subset of X is a pricipal filter. Deduce that every non-principla ultrafilter contains the Frechet filter.