MATH 113
 Self Study Material 2
 Set Theory

Selçuk Demir and Haydar Göral

December 26, 2008

Number Theory

1) Let a and $b \in \mathbb{Z}$ with one of them is nonzero. We say that d is the greatest common divisior of a and b which is denoted by $\operatorname{gcd}(a, b)$ if
i) $d \geq 0$
ii) d divides both a and b
iii) if c divides both a and b then c divides d
a) Show that $\operatorname{gcd}(a, b)$ exists.
b) Show that there are integers x and y such that $a x+b y=d$.
c) Let $a=23023$ and $b=24871$. Find d, x and y as above.
d) Given integers a_{1}, \ldots, a_{n} define gcd of a_{1}, \ldots, a_{n}.
2) Let $a \in \mathbb{Z}$ and p be a prime number which does not divide a. Show that $\operatorname{gcd}(a, p)=1$ which means they are relatively prime or coprime.
3) Let p be a prime number. Show that if p divides the product $a b$ then p divides either a or b.
4) We say that $a \in \mathbb{Z} / n \mathbb{Z}$ is invertible if there is a $b \in \mathbb{Z} / n \mathbb{Z}$ such that $a b=1$.
a) Show that $a \in \mathbb{Z} / n \mathbb{Z}$ is invertible if and only if a and n are relatively prime.
b) Let $n=35$ find the inverse of 11 .
c) Show that n is prime if and only all elements except 0 in $\mathbb{Z} / n \mathbb{Z}$ are invertible.
d) Find the invertible elements of $(\mathbb{Z} / 72 \mathbb{Z})$. This set of invertible elements is denoted by $(\mathbb{Z} / 72 \mathbb{Z})^{*}$.
e) Let p be a prime. Suppose that $x y=0$ in $(\mathbb{Z} / p \mathbb{Z})$. Show that either $x=0$
or $y=0$.
f) $(10 \mathbb{Z}+3) \cap(6 \mathbb{Z}+1)=n \mathbb{Z}+k$. Find n and k.
5) Using Fermat's Little Theorem, find the remainder when 37^{126} and 29^{29} are divided by 13 .

6)For which primes p is $p^{2}+2$ also prime?
7)Let p_{n} denote the $n^{\text {th }}$ prime number. Show that $p_{n+1} \leq p_{1} \ldots p_{n}+1$.Deduce that $p_{n} \leq 2^{2^{n-1}}$.
8)Show that there are infinitely many primes p of the form $6 k+5$.
(Hint:Similar proof for there are infinitely many primes of the form $4 k+3$)
9)Show that there are infinitely many x and $y \in \mathbb{N}$ such that x^{x} divides y^{y} but x does not divide y.
10)Calculate the sums $\sum_{k=0}^{n}\binom{n}{k}(-2)^{k}$ and $\sum_{k=0}^{n} k\binom{n}{k}$.

Set Theory

1) Let U be any non-empty set. Let $\phi(x)$ and $\psi(x)$ be two properties (of elements of U). Define

$$
U_{\phi}=\{x \in U: \phi(x)\} \quad \text { and } \quad U_{\psi}=\{x \in U: \psi(x)\}
$$

Express the following sets in terms of U_{ϕ} and U_{ψ}
a) $\{x \in U: \phi(x) \wedge \psi(x)\}$
b) $\{x \in U: \phi(x) \vee \psi(x)\}$
2) Let A and B be two disjoint sets. A set W is said to be a connection of A and B if the following conditions hold:
i) if $Z \in W$ then there are $x \in A$ and $y \in B$ such that $Z=\{x, y\}$.
ii) For each $x \in A$ there is exactly one $y \in B$ such that $\{x, y\} \in W$.
iii) For each $y \in B$ there is exactly one $x \in A$ such that $\{x, y\} \in W$.

Show that for any two disjoint sets A and B the collection $\Sigma(A, B)$ of all connections of A with B is a set.
3) Let A be a non-empty set, let $\equiv \subseteq A \times A$ be relation. Prove that \equiv is
an equicalance relation if and only if there exists a set Q and a surjection $\pi: A \rightarrow Q$ so that

$$
x \equiv y \Longleftrightarrow \pi(x)=\pi(y) .
$$

4)Find a bijection between \mathbb{N} and \mathbb{Q}.
5)Definition: A subgroup of \mathbb{Z} is a subset of \mathbb{Z} which is closed under substraction.
Find all subgroups of \mathbb{Z}.
6)Let K be a field. Show that K has only two ideal namely 0 and K itself.
7)Find all functions f from \mathbb{N} to itself which satisfies $f(x+y)=f(x)+f(y)$.

8)Filters

Definition: Let X be a set. A filter on X is a set \mathcal{F} of subsets of X that satisfies:
i) If $A \in \mathcal{F}$ and $A \subseteq B \subseteq X$, then $B \in \mathcal{F}$.
ii) If A and B are in \mathcal{F} then $A \cap B \in \mathcal{F}$.
iii) $\emptyset \notin \mathcal{F}$ and $X \in \mathcal{F}$.

If A is a non empty fixed subset of X then the set $\mathcal{F}(A)$ of subsets of X that contains A is a filter on X. Such a filter is called a Principal Filter. If X is infinite then the set of cofinite subsets of X is a called a Frechet Filter. A maximal filter is called an Ultrafilter.

Fix a set X
a) Show that a principal filter $\mathcal{F}(A)$ on X is an ultrafilter if and only if A is a singleton.
b) Show that the Frechet filter (on an infinite set) can not be contained in a principal filter.
c) Let $\left(\mathcal{F}_{i}\right)_{i \in I}$ be a family of filters then $\bigcap_{i \in I} \mathcal{F}_{i}$ is a filter.
d) Let \mathcal{F} be a set of subsets of X so that for any $A_{1}, \ldots A_{n} \in \mathcal{F}$,
$A_{1} \cap \ldots \cap A_{n} \neq \emptyset$, then there is a filter that contains \mathcal{F}. Describe this filter in terms of \mathcal{F}.
e) Show that a filter \mathcal{F} is an ultrafilter if and only if for any $A \subseteq X$ either A, or A^{c} is in \mathcal{F}. Conclude that in an ultrafilter \mathcal{F}, if $A \cup B \in \mathcal{F}$ then either A or B is in \mathcal{F}.
f) Conclude that any ultrafilter on X that contains a finite subset of X is a pricipal filter. Deduce that every non-principla ultrafilter contains the Frechet filter.

