Number Theory
1) Let a and $b \in \mathbb{Z}$ with one of them is nonzero. We say that d is the greatest common divisor of a and b which is denoted by $gcd(a, b)$ if
 i) $d \geq 0$
 ii) d divides both a and b
 iii) if c divides both a and b then c divides d
 a) Show that $gcd(a, b)$ exists.
 b) Show that there are integers x and y such that $ax + by = d$.
 c) Let $a = 23023$ and $b = 24871$. Find d, x and y as above.
 d) Given integers a_1, \ldots, a_n define gcd of a_1, \ldots, a_n.

2) Let $a \in \mathbb{Z}$ and p be a prime number which does not divide a. Show that $gcd(a, p) = 1$ which means they are relatively prime or coprime.

3) Let p be a prime number. Show that if p divides the product ab then p divides either a or b.

4) We say that $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible if there is a $b \in \mathbb{Z}/n\mathbb{Z}$ such that $ab = 1$.
 a) Show that $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible if and only if a and n are relatively prime.
 b) Let $n = 35$ find the inverse of 11.
 c) Show that n is prime if and only all elements except 0 in $\mathbb{Z}/n\mathbb{Z}$ are invertible.
 d) Find the invertible elements of $(\mathbb{Z}/72\mathbb{Z})$. This set of invertible elements is denoted by $(\mathbb{Z}/72\mathbb{Z})^*$.
 e) Let p be a prime. Suppose that $xy = 0$ in $(\mathbb{Z}/p\mathbb{Z})$. Show that either $x = 0$ or
or \(y = 0 \).

f) \((10\mathbb{Z} + 3) \cap (6\mathbb{Z} + 1) = n\mathbb{Z} + k\). Find \(n \) and \(k \).

5) Using Fermat’s Little Theorem, find the remainder when \(37^{126} \) and \(29^{29} \) are divided by 13.

6) For which primes \(p \) is \(p^2 + 2 \) also prime?

7) Let \(p_n \) denote the \(n^{th} \) prime number. Show that \(p_{n+1} \leq p_1 \ldots p_n + 1 \). Deduce that \(p_n \leq 2^{2^n - 1} \).

8) Show that there are infinitely many primes \(p \) of the form \(6k + 5 \).
(Hint: Similar proof for there are infinitely many primes of the form \(4k + 3 \))

9) Show that there are infinitely many \(x \) and \(y \in \mathbb{N} \) such that \(x^x \) divides \(y^y \) but \(x \) does not divide \(y \).

10) Calculate the sums \(\sum_{k=0}^{n} \binom{n}{k}(-2)^k \) and \(\sum_{k=0}^{n} k \binom{n}{k} \).

Set Theory

1) Let \(U \) be any non-empty set. Let \(\phi(x) \) and \(\psi(x) \) be two properties (of elements of \(U \)). Define

\[U_\phi = \{ x \in U : \phi(x) \} \quad \text{and} \quad U_\psi = \{ x \in U : \psi(x) \}\]

Express the following sets in terms of \(U_\phi \) and \(U_\psi \)

a) \(\{ x \in U : \phi(x) \land \psi(x) \} \)

b) \(\{ x \in U : \phi(x) \lor \psi(x) \} \)

2) Let \(A \) and \(B \) be two disjoint sets. A set \(W \) is said to be a connection of \(A \) and \(B \) if the following conditions hold:

i) if \(Z \in W \) then there are \(x \in A \) and \(y \in B \) such that \(Z = \{x, y\} \).

ii) For each \(x \in A \) there is exactly one \(y \in B \) such that \(\{x, y\} \in W \).

iii) For each \(y \in B \) there is exactly one \(x \in A \) such that \(\{x, y\} \in W \).

Show that for any two disjoint sets \(A \) and \(B \) the collection \(\Sigma(A, B) \) of all connections of \(A \) with \(B \) is a set.

3) Let \(A \) be a non-empty set, let \(\equiv \subseteq A \times A \) be relation. Prove that \(\equiv \) is
an equivalence relation if and only if there exists a set Q and a surjection $\pi : A \to Q$ so that
\[x \equiv y \iff \pi(x) = \pi(y). \]

4) Find a bijection between \mathbb{N} and \mathbb{Q}.

5) **Definition:** A subgroup of \mathbb{Z} is a subset of \mathbb{Z} which is closed under subtraction.
Find all subgroups of \mathbb{Z}.

6) Let K be a field. Show that K has only two ideals namely 0 and K itself.

7) Find all functions f from \mathbb{N} to itself which satisfies $f(x + y) = f(x) + f(y)$.

8) **Filters**
Definition: Let X be a set. A filter on X is a set \mathcal{F} of subsets of X that satisfies:

i) If $A \in \mathcal{F}$ and $A \subseteq B \subseteq X$, then $B \in \mathcal{F}$.
ii) If A and B are in \mathcal{F} then $A \cap B \in \mathcal{F}$.
iii) $\emptyset \not\in \mathcal{F}$ and $X \in \mathcal{F}$.

If A is a non-empty fixed subset of X then the set $\mathcal{F}(A)$ of subsets of X that contains A is a filter on X. Such a filter is called a Principal Filter. If X is infinite then the set of cofinite subsets of X is a called a Frechet Filter. A maximal filter is called an Ultrafilter.

Fix a set X

a) Show that a principal filter $\mathcal{F}(A)$ on X is an ultrafilter if and only if A is a singleton.

b) Show that the Frechet filter (on an infinite set) cannot be contained in a principal filter.

c) Let $(\mathcal{F}_i)_{i \in I}$ be a family of filters then $\bigcap_{i \in I} \mathcal{F}_i$ is a filter.

d) Let \mathcal{F} be a set of subsets of X so that for any $A_1, \ldots, A_n \in \mathcal{F}$, $A_1 \cap \ldots \cap A_n \neq \emptyset$, then there is a filter that contains \mathcal{F}. Describe this filter in terms of \mathcal{F}.

e) Show that a filter \mathcal{F} is an ultrafilter if and only if for any $A \subseteq X$ either A or A^c is in \mathcal{F}. Conclude that in an ultrafilter \mathcal{F}, if $A \cup B \in \mathcal{F}$ then either A or B is in \mathcal{F}.
f) Conclude that any ultrafilter on X that contains a finite subset of X is a principal filter. Deduce that every non-principal ultrafilter contains the Frechet filter.