Number Theory

1) (Prime Desert) Show that for all \(n \in \mathbb{N} \) there exists \(A, B \in \mathbb{N} \) with \(A - B \geq n \) such that there is no prime between \(A \) and \(B \).

2) There are infinitely many primes of the form \(4k + 3 \).

3) For a prime \(p \), if \(p = 3k + 1 \) then \(p = 6m + 1 \).

4) Define \(F_n = 2^{2^n} + 1 \). Show that \(F_0.F_1...F_{n-1} + 2 = F_n \). Deduce that there are infinitely many primes.

5) Is \(2^{13} - 1 \) prime?

Naive Set Theory and Combinatorics

1) Let \(X \) be a set. Show that there is no onto function from \(X \) to \(\mathcal{P}(X) \).

2) Let \(U \) be any non-empty set
 a) Let \(\phi(x) \) and \(\psi(x) \) be two properties (of elements of \(U \)). Assume that \(\phi(x) \Rightarrow \psi(x) \). Look at the sets

 \[U_\phi = \{ x \in U : \phi(x) \} \quad \text{and} \quad U_\psi = \{ x \in U : \psi(x) \} \]

 What is the relationship between \(U_\phi \) and \(U_\psi \) ?
 b) Take \(U = \mathbb{Z} \) and find concrete examples for \(\phi \), \(\psi \), \(U_\phi \), and \(U_\psi \).
 (Hint: Consider the relation divides in \(\mathbb{Z} \)).

3) Find a bijection between \(\mathbb{N} \times \mathbb{N} \) and \(\mathbb{N} \) explicitly.
4) Find an infinite family $(A_i)_{i \in \mathbb{N}}$ of sets so that any finite intersection of these sets is non-empty but $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$. And another infinite family $(B_i)_{i \in \mathbb{N}}$ of sets so that $\bigcap_{i \in \mathbb{N}} B_i$ has only one element.

5) Let \mathcal{P} be the power set of $I = \{1, 2, 3, 4, 5\}$. Let S be a randomly chosen subset of \mathcal{P}. What is the probability that S is the power set of some subset of I?

6) Let $|X| = n$ and $|Y| = m$. Find the number of all bijections from X to X and number of all functions from X to Y and number of all one to one functions from X to Y and number of all onto functions from X to Y.

Axiomatic Set Theory

1) By using \mathbb{N} is well ordered define the successor function s (Assume you do not know s and define it from the well order of \mathbb{N}).

2) Let A and B be two sets. Show that the collection of all functions from A to B is a set.

3) Let X be set and let \equiv be an equivalence relation on X. Define the equivalence classes of X under \equiv as $\bar{x} = \{y \in X : x \equiv y\}$. Show that the collection of all the equivalence classes of X under \equiv is a set.

4) Show that there is no $y \in \mathbb{N}$ such that $x < y < S(x)$.

5) Show that there are no $z \in \mathbb{Z}$ such that $z + z = (1, 0)$.

6) Show that for any $a, b \in \mathbb{Q}$ there is an element $c \in \mathbb{Q}$ such that $a < c < b$.

7) Show that there is no $x \in \mathbb{Q}$ such that $x \times x = 2$.