MATH 113
 Self Study Material Set Theory

Selçuk Demir and Haydar Göral

December 5, 2008

Number Theory

1)(Prime Desert) Show that for all $n \in \mathbb{N}$ there exists $A, B \in \mathbb{N}$ with $A-B \geq n$ such that there is no prime between A and B.
2) There are infinitely many primes of the form $4 k+3$.
3) For a prime p , if $p=3 k+1$ then $p=6 m+1$.
4) Define $F_{n}=2^{2^{n}}+1$. Show that $F_{0} \cdot F_{1} \ldots F_{n-1}+2=F_{n}$. Deduce that there are infinitely many primes.
5) Is $2^{13}-1$ prime ?

Naive Set Theory and Combinatorics

1) Let X be a set. Show that there is no onto function from X to $\mathcal{P}(X)$.
2) Let U be any non-empty set
a) Let $\phi(x)$ and $\psi(x)$ be two properties (of elements of U). Assume that $\phi(x) \Rightarrow \psi(x)$. Look at the sets

$$
U_{\phi}=\{x \in U: \phi(x)\} \quad \text { and } \quad U_{\psi}=\{x \in U: \psi(x)\}
$$

What is the relationship between U_{ϕ} and U_{ψ} ?
b) Take $U=\mathbb{Z}$ and find concrete examples for ϕ, ψ, U_{ϕ}, and U_{ψ}.
(Hint: Consider the relation divides in \mathbb{Z}).
3) Find a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} explicitely.
4) Find an infinite family $\left(A_{i}\right)_{i \in \mathbb{N}}$ of sets so that any finite intersection of these sets is non-empty but $\bigcap_{i \in \mathbb{N}} A_{i}=\emptyset$. And another infinite family $\left(B_{i}\right)_{i \in \mathbb{N}}$ of sets so that $\bigcap_{i \in \mathbb{N}} B_{i}$ has only one element.
5) Let \mathcal{P} be the power set of $I=\{1,2,3,4,5\}$. Let S be a randomly chosen subset of \mathcal{P}. What is the probability that S is the power set of some subset of I ?
6) Let $|X|=n$ and $|Y|=m$. Find the number of all bijections from X to X and number of all functions from X to Y and number of all one to one functions from X to Y and number of all onto functions from X to Y.

Axiomatic Set Theory

1) By using \mathbb{N} is well ordered define the succesor function s (Assume you do not know s and define it from the well order of \mathbb{N}).
2) Let A and B be two sets. Show that the collection of all functions from A to B is a set.
3) Let X be set and let \equiv be an equivalance relation on X. Define the equivalance classes of X under \equiv as $\bar{x}=\{y \in X: x \equiv y\}$. Show that the collection of all the equivalance classes of X under \equiv is a set.
4) Show that there is no $y \in \mathbb{N}$ such that $x<y<S(x)$.
5) Show that there are no $z \in \mathbb{Z}$ such that $z+z=\overline{(1,0)}$.
6) Show that for any $a, b \in \mathbb{Q}$ there is an element $c \in \mathbb{Q}$ such that $a<c<b$.
7) Show that there is no $x \in \mathbb{Q}$ such that $x \times x=2$.
