Algebra

First Midterm
1999-2000
Ali Nesin

1. Let G be a set together with an associative binary operation $(x, y) \mapsto x y$.

1a. Assume that for all $a, b \in G$ there are unique $x, y \in G$ such that $a x=y a=b$. Show that G is a group under this binary operation.

1b. Assume that for all $a, b \in G$ there is a unique $x \in G$ such that $a x=b$. Is G necessarily a group under this binary operation?
2. Let A and B be two simple groups ${ }^{1}$. Find all normal subgroups of $A \times B$.

3a. Show that there are subgroups $G_{0}=1 \triangleleft G_{1} \triangleleft G_{2} \triangleleft G_{3}=\operatorname{Sym}(4)$ of $\operatorname{Sym}(4)$ such that G_{i+1} / G_{i} is abelian.

3b. Conclude that the only simple subgroups of $\operatorname{Sym}(4)$ are cyclic of prime order.

3c. Conclude that a simple nonabelian group cannot have a proper subgroup of index ≤ 4.

3d. Conclude that a simple nonabelian group cannot have a proper subgroup with less than 5 conjugates.

3e. Conclude that, if $i \leq 3$, a group of order $2^{i} \times 3^{n}$ cannot be simple and nonabelian.
4. Let A and T be two groups. Let $\varphi: T \rightarrow \operatorname{Aut}(A)$ be a homomorphism. For t in T, we will denote the automorphism $\varphi(t)$ by φ_{t}. On the set $G=A \times T$ we define the following multiplication:

$$
(a, t)(b, s)=\left(a \varphi_{t}(b), t s\right) .
$$

4a. Show that this defines a group operation on G with $\left(1_{A}, 1_{B}\right)$ as the identity element and with $\left(\varphi_{t^{-1}}\left(a^{-1}\right), t^{-1}\right)$ as the inverse of (a, t).

4b. Assume $\varphi_{t}=\mathrm{Id}_{A}$ for all $t \in T$. What can you say about G ?
4c. Show that $A_{1}=A \times 1$ is a normal subgroup of G and is isomorphic to A.
4d. Show that $T_{1}=1 \times T$ is a subgroup of G and is isomorphic to A.
4e. Show that the two subgroups of A_{1} and T_{1} intersect trivially.
4f. Show that $G=A_{1} T_{1}$.
This group is called the semidirect product of A and T and is denoted by $A \rtimes_{\varphi} T$.
5. Let G be a group and assume that G has two subgroups A and T such that

$$
\begin{aligned}
& A \triangleleft G, \\
& A \cap T=1, \\
& G=A T .
\end{aligned}
$$

Let $\varphi: T \rightarrow \operatorname{Aut}(A)$ be the group homomorphism given by $\varphi_{t}(a)=\operatorname{tat}^{-1}$ (for $a \in A$, $t \in T)$. Show that $G \approx A \rtimes_{\varphi} T$.

[^0]
[^0]: ${ }^{1}$ A group G is called simple if 1 and G are the only normal subgroups of G.

