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. Let (M, d) be a metric space. For x,y € M define

d(z,y)

p(r,y) = Hd—(x,y)

Show that p is also a metric on M. Show that these two metrices are
equivalent (i.e. they generate the same open sets).

. Show that a compact space is bounded.

. Let A be a closed subset of M. For x € M define
f(z) =d(z,A) = inf{d(x,y) : y € A}.

Show that d(z,y) > |f(x) — f(y)| for all x,y € M. Show also that
flz)=0iff x € A.

. Suppose that every sequence in M has a convergent subsequence. If
e > 0 is given show that any subset A with the property that d(z,y) > ¢
for all z,y € A is finite.

. Suppose that K is a compact subset of M and B is a closed subset of
M with K N B = (. Define d(K, M) to be inf{d(k,b) : k € K,b € B}.
Show that d(K, M) > 0. Show that one can find metric spaces where
A, B are disjoint non-empty closed subsets of M with d(A, B) = 0.

. Suppose that (z,).en is a sequence in M converging to some z € M.
Show that {z,, : n € N} U {x} is compact.

. Show that, if K C R" is closed and bounded, every sequence in K has
a subsequence which converges to some point of K.

. Let K C R". Show that K is bounded iff it is totally bounded.
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Show that in a general metric space a bounded set is not necessarily
totally bounded.

Let X and Y be metric spaces. Put Z = X x Y and

d((z,y), (2,1)) = dx(z,2) + dy(y,1)

for all (x,y), (z,t) € Z. Show that Z is a metric space with this metric.
Show that if U C X and V' C Y then UxV isopenin Z iff U € OP(X)
and V € OP(Y).

Let X be metric space and A := {(z,z) : © € X}. Show that A is
closed in X x X.

Let E be any set which is not empty. X := ¢*(F) is defined to be the
space of all bounded complex functions on E. For f,g € X we define

d(f,g) = sup|f(p) —g(p)!.

peE
Show that X is a complete metric space.

Let X be real or complex vector space. By a norm on X we mean
a function ||-|| : X — R with the following properties: (a) ||z] > 0
for all z € X; (b) [Jz]| = 0iff z = 0; (¢) ||z +yl| < ||lz|| + [Jy]| for all
z,y € X; (d) |Jazx| = |a] ||z|| for all numbers a and = € X. Show that if
X is a normed vector space, it becomes in a natural way a meric space

by putting d(z,y) = ||z — y||.

For X € R” define |X|, = 3|z and | X, := /33, |zi]* and
| Xl = sup;|x;|. All these norms are equivalent in the sense that
they generate the same open sets.

Let V' be a vector space, ||||; and ||||, two norms on V. Show that these
two norms are equivalent iff there exist M, N > 0 such that

M z|, < lzll, < N[z,
forallz e V.

Let X and Y be metric spaces, f : X — Y. We say that f pre-
serves convergence if whenever z,, — x in X, (f(x,)), also converges
and f(x,) — f(x). If K is a compact subset of X and f preserves
convergence, show that f(K) must be compact.
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Let U,V be two dense open subsets of a metric space X. Is U NV
dense in X7

Let X,Y be metric spaces. Show that X x Y is compact iff X and YV
are compact.

Let X,, be a metric space for every n € N. Let X := [[Z, X,, be the
space of all sequences = = (x,), in U,en X, such that x, € X,, for each
n € N. On X define

oo

o 1 dn(l'nayn)
W)= 2 3T dyfom )

for each z,y € X. Show that X is a metric space. Show also that X is
compact iff so is each X,.

Show that a subspace of a separable metric space is separable.

Let M be a separable metric space. Show that if (U, )aes is a family
of pairwise disjoint non-empty open subsets of M, then I should be
countable.

Show that if S is infinite, the space £>°(S) is not separable.

If M is a connected metric space and if M contains at least two points,
show that M is uncountable.

Let (X, )nen be a sequence in RY, X € R? Show that X, — X iff,
for each i € [1,n] we have X,,(i) — X (7).

Let M be a metric space, K a non-empty compact subset of M, x €
M — K. Show that there exists a y € K such that d(z, K) = d(z, y).

Let M be a metric space, K a subset of M. Define
diam(K) := sup{d(z,y) : z,y € K}.
Show that K is bounded iff diam(K’) is finite.

Show that, if K is compact, then diam(K) is finite and that there are
two points z,y € K such that d(z,y) = diam(K).

Let M be a complete metric space, (E,)n,en a sequence of closed sets
with the following conditions:

(a) E,y1 C E, for each n € N,
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(b) lim,,_ diam(E,) = 0.
Show that N,enF, consists of exactly one point.

If A, B C R we define A+ B to be the set of all X +Y where X € A
and Y € B. If A and B are closed balls in R¢, show that A+ B is also
a closed ball.

Show that if A and B are both compact, then A + B is also compact.
Show that if A is compact, B is closed, then A + B is closed.

If A and B are both closed, give an example to show that A+ B is not
necessarily closed.

Let M be a metric space, A C M which is not empty. Then, the
function f : M — R given by f(z) = d(z,A) (for all x € M) is
continuous.

Let M be a metric space, A, B two non-empty disjoint closed subsets.
Show that there exists a continuous function f : M — [0, 1] such that
f(z)=1forall z € Aand f(z) =0 for all z € B.

Let M be metric space, A, B two non-empty disjoint closed subsets of
M. Show that there exist U,V € OP(M) such that A C U, B CV
and UNV = 0.

A metric space M is said to be locally compact is for every x € M there
is a compact set K such that x € K°. For example, R" is a locally
compact metric space. If M is a closed subset of R", show that it is,
as a subspace, a locally compact metric space. What can you say if M
is open? What if it is the intersection of an open and a closed subset
of R*? (Such subsets are said to be locally closed.)

Let M be a locally compact metric space, K a non-empty compact
subset, U € OP(M) with K C U. Show that there is a O € OP(M)
such that O is compact with K € O C O C U.

Let X € RY and ¢ > 0. Show that S(X,¢) is path-connected, hence
connected.

Let M be a compact metric space, N another metric space, f : M —
N a continuous bijection. Show that f is a homeomorphism. Le., f~1
is also continuous.
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Let K be a compact metric space, f : K — K an isometry. This
means that d(f(z), f(y)) = d(z,y) for all x,y € M. Show that f is a
bijection.

Define f : R — R be defined as follows: If z € R — Q, then f(z) = 0.
If z =2 (in reduced form), then f(Z) = <. Find the points where f
Is continuous.

Let M be a metric space, D C M dense. Let f: D — R be a func-
tion. Show that if f is uniformly continuous then it has a continuous
extension to all of M. (This means that there exists some g : M — R
continuous such that g(x) = f(z) for all x € D.)

Let f : (0,1) — R be a function. Show that f has a continuous
extension to [0, 1] iff it is uniformly continuous.

Let K be a compact metric space, (U,)aer an open cover of K. Show
that there exists some ¢ > 0 such that any open ball of radius ¢ is
contained in some U,,.

Let M, N be metric spaces, f : M — N be uniformly continuous.
If A is a totally bounded subset of M, show that f(A) is also totally
bounded.

Let M, N be metric spaces, f : M — N a function. Suppose that the
restriction of f to any compact subset of M is continuous. Show that
f is continuous.

If A is a locally compact subspace of a metric space M, show that A
is locally closed.

Let M be a metric space, A, B be two locally compact subspaces of M.
Show that AN B is also locally compact.

In R give an example of two locally compact subspaces whose union
is not locally compact. Give also an example of a locally compact
ssubspace whose complement is not locally compact.

Give an example of a locally compact metric space which is not com-
plete.

Let M be a proper metric space. Show that M is complete. If A is a
relatively compact subset, show that C'(A, %) is compact.

If A C M is connected and A C B C A, show that B is also connected.

b}
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Suppose Ai, As, - -+, A, are connected subset of a metric space M with
A;N A1 #0for all 1 <1 < n. Show that UL, A; is connected.

If A, B are connected subsets of M and AN B # (), show that AU B is
connected.

Let M be a metric space, A, B € CL(M) — {0}, AUB and AN B be
connected. Show that both A and B are connected.

Let M be a complete metric space, f : M — M a function. Suppose
that there is some ¢ € (0, 1) such that d(f(z), f(y)) < cd(z,y) for all
x,y € M. Show that there is a unique = € M such that f(x) = x.

Let f : R — R be the function defined by
flx)=oz— g — arctan x

for all € R. Show that |f(z) — f(y)| < |x — y| for all z,y € R. Show
also that f does not have any fixed point. Deduce that ¢ < 1 in the
previous exercise is essential.

Assume E C R"™. A point X € R" is said to be a condensation point of
S if for every r > 0 B(X,r) N E is uncountable. If E is uncountable,
show that there is some X € S which is a condensation point of E.

Let S,7 C R*. Show that SNT C SNT and that SNT C SNT.
(This is true for general metric spaces as well)

Prove that every F' € CL(R) is the intersection of a sequence of open
sets.

Suppose that S, C R™. Show that S°N7T° = (SN T)° and that
SeuUTe C(SUT)°. (This is true for general metric spaces as well)

Let S C R™. We say that a point X € R" is an accumulation point
of S if evry r-ball around X contains some element of .S different from
X itself. Let F be a family of subsets of R™". Let S = UscrA and
T = NacrA. Prove or disprove:

(a) If X is an accumulation point of T', then it is an accumulation
point of each A € F.

(b) If X is an accumulation point of S, then it is an accumulation
point of at least one A € F.
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Let S be the set of rational numbers in (0,1). Can one write S as the
intersection of a countable family of open subsets of R?

Let S be a subset of a metric space M, A point X € S is said to be
an isolated point of S if B(X,r) NS = {X} for some r > 0. Now let
S C R"™. Show that the set of isolated points of S is at most countable.

Let B : {B((z,z),z) : © € (0,00),z € Q}. Show that B is an open
cover of (0,00) x (0,00) C R2.

Let U : {(+,2) : n € N,n > 2} is an open cover of (0,1) which does
not have any finite subcover.

Suppose S C R™ has the following property: For every X € S there
is some r > 0 such that S N B(X,r) is countable. Prove that S is
countable?

Let S C R"™ be an uncountable subset. Let 1" be the set of condensation
points of S. Prove that

a) S — T is at most countable,

(a)

(b) T is closed,

(¢) SNT is uncountable, and
)

(d) T does not have any isolated points.

A set S C R™ is said to be perfect if every point of S is an accumulation
point of S. (S C R™ is perfect iff it is a closed set whithout isolated
points.) Prove that if F/ C R™ is uncountable and closed, then F' =
AU B, where A is perfect and B is countable.

Let M be a metric space, A, S C M. If A C S C A, we say that A is
dense in S. Now let A, 5,7 C M. If A is dense in S, S is dense in T,
show that A is dense in T

Suppose M is a metric space. If A C M and B € OP(M) are dense in
M, show that AN B is also dense in M.

Let M be metric space. Assume K C L C M. Show that K is compact
in L iff it is compact in M.

Let a,b € Q° with a < b, S = QN (a,b). Show that S is cloed and
bounded in Q and that it is not compact.



74. Let M be a metric space, A, B C M, F be a family of subsetes of M.
The set J(A) = A — A° is called the boundary of A. Prove that

f
(g) (0(A)>=0if Ac OP(M) or Ae CL(M).
(h) If A is closed and A° = B° = (), then (AU B)° = 0),

(
(
(
(UaerA)° C UgerA°, and that the inclusion can be proper,
(
I
I

(i) HANTB =0, then (AU B) = d(A) U d(B).

75. Let M be metric space. If x,, — x and y, — vy in M, show that

76. A sequence (z,), in R satisfies 72,1 = 22 + 6 for n € N. If z; = %,
show that (z,), converges and find its limit. What if z; = 27

77. If zy € (0,1) and ;41 = 1 — /1 —x, for all n > 1, show that (z,), is

decreasing with limit 0. Show also that “£2 — 2.

78. If apso = a”zﬂ for all n > 1, show that a,, — —“122“2,

79. If |a,| < 2 and a1 —a,| < L a2,, —a2| for all n > 1, show that
(an)n converges.

80. Let F': N — R? be a sequence with F' = (fi, fa,- -+, fa). Show that
F(n) — P e RYiff f;(n) — d; asn — oo for each i = 1,2, ,d.

81. Suppose that f : R — R satisfies f(x +y) = f(x) + f(y) for all
x,y € R. If f is continuous at one point, show that f is continuous

and that there is some a € R with f(z) = az for all x € R.

82. Let a,b € R with a < b and f : [a,b] — R. We say that f is
convex if for all z,y € [a,b] and « € [0,1] we have f((1 — a)z + ay) <
(1 —a)f(x) + af(y). Show that a convex function f : [a,b] — R is
continuous.

83. Let S C R"™ be open and connected. Let T" be a connected component
of R" — S. Show that R™ — T is connected.
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Let M be a metric space, x € M and U(zx) the connected component
of M containing z. Show that U(z) € CL(M).

Let T : R™ — R™ be linear. Show that 7T is uniformly continuous.

Let E, F be normed vector spaces, T : E — F linear. Show that
TFAE:

(a) T is continuous at one point,

(b) T is uniformly continuous,

(¢) T maps bounded sets to bounded sets.
Let |-] be a norm on R™. Show that there are m, M € (0, 00) such that

m|X| < [|X] < M|X]| for all x € R". (||X]|| denotes the euclidean
norm of X € R".) Hence all norms on R™ are equivalent.

Let K be a compact metric space, f : K — K be a function with

d(f(z), f(y)) < d(z,y)

for all x,y € K. Does f necessarily have a fixed point?

Let K be a compact metric space. We now know that every continuous
complex function on K is bounded. Hence, if C(K') denotes the set of

continuous complex functions on K, it is a vector subspace of £ (K).
Is C(K) closed in (*(K).

Suppose M is a locally compact separable metric space. Show that
there exists a sequence (K,), of compact subsets such that

(a) K, C Ky, forallneN,
(b) M =U,K,, and that

(c) every compact subset of M is contained in at least one of the K,’s.

Let E, F' be metric spaces, f : E — F a function. The graph of f is
defined to be the set {(z, f(z)) : x € E}. If f is continuous, show that
the graph of f is closed. Suppose that E is compact. Show that f is
continuous iff the graph of f is compact.

Suppose that f : R — R is a function with the intermediate value
property: If f(a) < ¢ < f(b), there is some z between a and b such
that f(z) = c. Suppose also that f~'({r}) is closed for every r € Q.
Show that f is continuous.



93. Ssuppose that f : (a,b) — R is continuous and that
(25Y) < 1210

2 - 2
for all z,y € (a,b). Show that f is convex.

94. Find the limits if they exist:

(a)

xt + y4
im —_——
(z,y)—(0,0) 22 + y?
(b)
x>

im _—
(z.y)—(0,0) 22 + y*

(c)
X=X

where X, X5 are given elements of R".

. . . 1
95. Show that XlﬁlpﬂX) = +oo iff Xlinpm = 0 and f(X) > 0 for

every X in some punctured neighborhood of P.

96. Let C' C R" be a closed, convex non-empty subset, P € R” — C'. Show
that there is exactly one point X € C such that d(P,C) = d(P, X).

97. Suppose that f: R™ — R is continuous, that f(X) > 0 for all X # 0
and that f(cX) — cf(X) for all X € R" and ¢ > 0. Show that there
are a,b € (0,00) such that a [| X|| < f(X) <b||X] for all X € R™.

98. If A, B are two non-empty compact subsets of R", define d(A, B) to be
the smallest number a with the following property: For every X € A
there is some Y € B such that | X — Y| < a and for every Y € B
there exists some X € A such that || X —Y|| < a. Show that d is a
metric on the space KC(R™) of all non-empty compact subsets of R™. Is
this space complete? If JCC(R™) denotes the set of elements of IC(R™)
which are also convex, is it closed?

99. Suppose that K C R" is compact, convex, symmetric about 0 and that
K contains a euclidean neighborhood of 0. Let |0| = 0 and define, for
X #0,
1
X|:= .
X1 max{t: tX € K}

10
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Show that X +— |X| is a norm on R™.

Let M be a metric space, x € M, and f,g: M — C two functions. If
f is continuous at z, and lim,_., g(y) = 0, show that

Jim f(y)g(y) =0.

Suppose f is differentiable in (a, b).

(a) If f'(z) > 0 for all € (a,b), show that f is monotonically in-
creasing.

(b) If f'(x) < 0 for all x € (a,b), show that f is monotonically de-
creasing.

(c) If f'(x) =0 for all € (a,b), show that f is constant.

Let f : (a,b) — C be a function, z € (a,b). We can define the
derivative of f at x in the same way as the real-valued case. We could
also write f = u 4 tv where u, v are real valued functions. Show that
then f is differentiable iff both u and v are differentiable and in this
case we have

f'(x) =/ (x) + ' ().
Let f: R — R be a function such that |f(z) — f(y)| < (z — y)? for
all z,y € R. Show that f is constant.

Let g : R — R be a differentiable function withe a bounded derivative.
Let € > 0 and define f(z) = x4 eg(x) for all € R. Prove that f is a
one-to-one function if € is small enough.

If o o
Oh+ 2L 4 ... n_o_
o+ 5 + + n 1 ,
where Cy, C,--- ,C — n are real constants, prove that the equation

Co+ Crz+ Cox® + -+ Cpaz™ =0
has at least one root between 0 and 1.

Suppose f : (0,00) — R is differentiable and f'(z) — 0 as z — 0.
Show that f(x +1) — f(x) — 0 as * — o0.

Suppose

11
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a is continuous for z > 0,

(a) f

(b) f'(x) exists for z > 0,
(c) f(0)=

(d) f

"is monotonlcally incerasing.

If g(z) = @ for all z > 0, show that g is monotonically increasing.
Suppose f'(z) and ¢'(x) exist, ¢'(z) # 0, f(z) = g(x) = 0. Prove that
) _ (=)

2 g(t) (@)

Show also that this holds for complex functions as well.

Let f be a continuous real function. Suppose that f'(z) exists for all
x # 0 and that f'(x) — 3 as x — 0. Does f’(0) exist?

Suppose f and g are complex differentiable functions on (0, 1),
f(x) — 0, g(z) — 0, f'(z) — Aandg'(x) — B
as r — 0. (B # 0) Show that

lim@ = %

0 g(x)

Suppose f is defined in a neighborhood of x and suppose that f”(x)
exists. Show that

h—0

Show that the limit may exist although even if f”(x) does not.

If f(z) = |z|°, compute f'(x) and f”(z) for all real z and show that
f"(0) does not exist.

Suppose a and ¢ are real numbers, ¢ > 0, and f is defined on [—1, 1] by

_Jatsin(z=¢) (if z #0),
fle) = {0 (if = = 0).

Prove the following statements:

12
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(a) f is continuous iff a > 0.

(b) f(0) exists iff a > 1.

(c) f"is bounded iff a > 1+ c.
) f"(0) exists iff a > 2+ c.
)
)

f" is bounded iff a < 2 + 2c.

(d
(e
(f

f" is continuous iff a > 2 + 2c.

Suppose a € R, f is a twice-differentiable function on (a,c0), and
My , My, M, are the least upper bounds of |f(z)|, |f'(x)|, |f"(z)],
respectively, on (a,c0). Prove that

M? < 4MoMs.

Suppose f is a real, twice-differentiable function on [—1, 1], such that

Prove that f"”(z) > 3 for some z € (—1,1).
Suppose f: R — R is a function.

(a) If f is differentiable and f(t) # 1 for all t € R, show that f can
have at most one fixed point.

(b) Show that the function f(¢) = ¢+ (1 + ¢*)~! has no fixed point,
although 0 < f(t) < 1 for all real ¢t.

(c) If there is a constant A < 1 such that |f/(¢)] < A for all real t,
show that f must have a fixed point.

Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number
A such that |f'(x)] < A|f(z)| for all z € [a,b]. Prove that f(z) =0
for all = € [a, b].

Let f: (a,b) — R be differentiable with a bounded derivative. Show
that f is uniformly continuous.

Suppose f : (a,00) — Ris differentiable (a € R), and lim, .., f'(x) =
0o. Show that f is not uniformly continuous.

Suppose f : (a,00) — R is differentiable. If lim, ., f'(z) = g, show

that lim,_, @ = g as well.

13
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Suppose f : (0,1] is differentiable with |f'(z)] < 1 for all z € (0, 1].
Define a,, = f(2) for all n € N. Show that (a,), converges.

Suppose f : (a,b) — R is differentiable and ¢ € (a,b). Assume that
lim, .. f'(x) exists. Show that lim,_.. f'(z) = f'(c).

Suppose f : (a,b) — R is continuous and is differentiable except
possibly at ¢ € (a,b). If f'(x) — A as x — ¢, show that f is also
differentiable at ¢ and f'(c) = A.

For each n € N, let g, : [0,1] — R be an integrable function. Define
Gu(z) = [3 gn(t)dt for all n € N and z € [0,1]. Show that (G,), has a

uniformly convergent subsequence.

Define f : R — R by

—1/z if
o) = {e itx>0

0 itz <0

(a) Show that f is smooth.
(b) Is f analytic?
(c) Define
g(z) = f(1—a)f(z+1).

Show that ¢ is smooth, identitaclly zero outside (—1, 1), positive
on (—1,1), and takes the value 1 at x — 0.

(d) Show that g(x) = e~2*"/*=1 for all |z| < 1.

Let f, : R — R be differentiable functions for each n € N with
fn(0) =0 and |f)(z)| < 2 for all n,x. If f,, — ¢ pointwise, show that
g is continuous.

Suppose ( f,)n is a sequence of differentiable real functions on a compact
interval [a,b] such that |f,(z)] < M and |f)(x)] < M for all n,x.
(M € R is fixed.) Show that then (f,), has a uniformly convergent
subsequence.

Let (f,,) be a sequence of functions defined on an open interval [ satisfy-
ing |fu(z)| < F(z) and | f/(z)| < G(z) for all n, z, where F,G : | — R
are constinuous functions. Prove that (f,) has a subsequence which
converges uniformly on every compact subset of I.

14
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Prove that the set of polynomials of degree< N with coefficients in
[—1, 1] is uniformly bounded and uniformly equicontinuous on any com-
pact interval.

Prove that the family of polynomials P(z) of degree < N satisfying
|P(z)| <1 on [0,1] is uniformly equicontinuous on [0, 1].

If (f,)n is a uniformly equicontinuous sequence of functions on a com-
pact interval and f,, — f pointwise, prove that f, — f uniformly.

Let I be finite set of continuous functions on a compact interval. Show
that F := {> ;cpapf : |ay| < 1forall f € F} is uniformly bounded
and uniformly equicontinuous.

Let (f.)n be a sequence of uniformly bounded uniformly equicontinuous
functions on a bounded open interval (a,b). Show that the functions
can be extended to the compact interval [a,b] so that they are still
uniformly bounded and uniformly equicontinuous.

Give an example of a sequence of functions that is unformly equicon-
tinuous but not uniformly bounded.

Give an example of a sequence of real functions on R that is uniformly
bounded and uniformly equicontinuous but doesn’t have any uniformly
convergent subsequence.

Prove that the sequence f,(z) = sin nz is not uniformly equicontinuous
on any non-trivial compact interval.

Suppose that (f,), is a sequence of functions on a compact interval
that is pointwise bounded and pointwise equicontinuous. Show that it
has a subsequence which converges pointwise.

Suppose that f :[0,1] — R is continuous. If f satsifies

1 4
o L+t

/m f(t)dt = zsinx +
0

find f.
Find

lim v / gdt.
0

=3 — 3 t

Find tha maximum value of the function x+y on the unit circle {(z, y) :
w2 +y? =1}
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141. Find the largest area of a rectangle inscribed in the ellipse

2 P
St =L
(Here a,b > 0)
142. Let A= {(z,y) : y*> =2z}. If p= (1,4) € R?, find d(p, A).

143. Suppose f : [a,b] — R is continuous. Show that

b 1/p

144. Show that, for m,n € N, we have

s
/ sin mx cos nxdr = 0.

—Tr

145. Let m,n € N with m # n. Show that

s s
/ sin ma sin nxdx = / cosmx cos nxdx = 0.
—Tr —T

146. Suppose that f : [0,1] — R is continuous. Prove that
s ) 1 ™ )
/ zf(sinz)dr = —7T/ f(sinz)dz.
0 2 Jo

147. Suppose a,b € R with |a| # |b|. Prove that

T

1
lim — sin at cos btdt = 0.
z—0 0

148. Let f be a continuous function on [a, b]. Suppose there exists a constant
K such that

f@l <K [ 1]
for all z € [a,b]. Show that f(z) =0 for all = € [a, b].

149. Suppose f : [a,b] — R is twice continuously differentiable. Show that

b
/ f"(@)dz = bf'(b) — F(B) + F(a) — af'(a).

a
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150. Let m,n € N. Show that
1 1
/ ™1 —x)"dx = / z"(1 —x)"dx
0 0

151. For f,g € C(la, b)) define dy(f,g) = ff |f(z) — g(z)| dz. Show that d;
is a metric on C([a, b]).

152. Prove that
lim ’ Ldm =7
o ) o h2 422

153. Prove that, if f:[—1,1] — R is continuous, then

lim 1 Lf(:v)d:v =7 f(0).

h—0 —1 h2 + 1’2
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