Introduction to Analysis

Selçuk Demir

Fall 2008

1. Let (M, d) be a metric space. For $x, y \in M$ define

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

Show that ρ is also a metric on M. Show that these two metrices are equivalent (i.e. they generate the same open sets).

- 2. Show that a compact space is bounded.
- 3. Let A be a closed subset of M. For $x \in M$ define

$$f(x) = d(x, A) = \inf\{d(x, y) : y \in A\}.$$

Show that $d(x,y) \ge |f(x) - f(y)|$ for all $x, y \in M$. Show also that f(x) = 0 iff $x \in A$.

- 4. Suppose that every sequence in M has a convergent subsequence. If $\varepsilon > 0$ is given show that any subset A with the property that $d(x, y) \ge \varepsilon$ for all $x, y \in A$ is finite.
- 5. Suppose that K is a compact subset of M and B is a closed subset of M with $K \cap B = \emptyset$. Define d(K, M) to be $\inf\{d(k, b) : k \in K, b \in B\}$. Show that d(K, M) > 0. Show that one can find metric spaces where A, B are disjoint non-empty closed subsets of M with d(A, B) = 0.
- 6. Suppose that $(x_n)_{n \in \mathbb{N}}$ is a sequence in M converging to some $x \in M$. Show that $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ is compact.
- 7. Show that, if $K \subset \mathbb{R}^n$ is closed and bounded, every sequence in K has a subsequence which converges to some point of K.
- 8. Let $K \subset \mathbb{R}^n$. Show that K is bounded iff it is totally bounded.

- 9. Show that in a general metric space a bounded set is not necessarily totally bounded.
- 10. Let X and Y be metric spaces. Put $Z = X \times Y$ and

$$d((x,y),(z,t)) = d_X(x,z) + d_Y(y,t)$$

for all $(x, y), (z, t) \in Z$. Show that Z is a metric space with this metric. Show that if $U \subset X$ and $V \subset Y$ then $U \times V$ is open in Z iff $U \in OP(X)$ and $V \in OP(Y)$.

- 11. Let X be metric space and $\Delta := \{(x, x) : x \in X\}$. Show that Δ is closed in $X \times X$.
- 12. Let E be any set which is not empty. $X := \ell^{\infty}(E)$ is defined to be the space of all bounded complex functions on E. For $f, g \in X$ we define

$$d(f,g) = \sup_{p \in E} |f(p) - g(p)|.$$

Show that X is a complete metric space.

- 13. Let X be real or complex vector space. By a norm on X we mean a function $\|\cdot\| : X \longrightarrow \mathbb{R}$ with the following properties: (a) $\|x\| \ge 0$ for all $x \in X$; (b) $\|x\| = 0$ iff x = 0; (c) $\|x + y\| \le \|x\| + \|y\|$ for all $x, y \in X$; (d) $\|ax\| = |a| \|x\|$ for all numbers a and $x \in X$. Show that if X is a normed vector space, it becomes in a natural way a meric space by putting $d(x, y) = \|x - y\|$.
- 14. For $X \in \mathbb{R}^n$ define $||X||_1 = \sum_i |x_i|$ and $||X||_2 := \sqrt{\sum_i |x_i|^2}$ and $||X||_{\infty} = \sup_i |x_i|$. All these norms are equivalent in the sense that they generate the same open sets.
- 15. Let V be a vector space, $\|\|_1$ and $\|\|_2$ two norms on V. Show that these two norms are equivalent iff there exist M, N > 0 such that

$$M \|x\|_1 \le \|x\|_2 \le N \|x\|_2$$

for all $x \in V$.

16. Let X and Y be metric spaces, $f : X \longrightarrow Y$. We say that f preserves convergence if whenever $x_n \longrightarrow x$ in X, $(f(x_n))_n$ also converges and $f(x_n) \longrightarrow f(x)$. If K is a compact subset of X and f preserves convergence, show that f(K) must be compact.

- 17. Let U, V be two dense open subsets of a metric space X. Is $U \cap V$ dense in X?
- 18. Let X, Y be metric spaces. Show that $X \times Y$ is compact iff X and Y are compact.
- 19. Let X_n be a metric space for every $n \in \mathbb{N}$. Let $X := \prod_{i=1}^{\infty} X_n$ be the space of all sequences $x = (x_n)_n$ in $\bigcup_{n \in \mathbb{N}} X_n$ such that $x_n \in X_n$ for each $n \in \mathbb{N}$. On X define

$$d(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x_n, y_n)}{(1 + d_n(x_n, y_n))}$$

for each $x, y \in X$. Show that X is a metric space. Show also that X is compact iff so is each X_n .

- 20. Show that a subspace of a separable metric space is separable.
- 21. Let M be a separable metric space. Show that if $(U_{\alpha})_{\alpha \in I}$ is a family of pairwise disjoint non-empty open subsets of M, then I should be countable.
- 22. Show that if S is infinite, the space $\ell^{\infty}(S)$ is not separable.
- 23. If M is a connected metric space and if M contains at least two points, show that M is uncountable.
- 24. Let $(X_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^d , $X \in \mathbb{R}^d$. Show that $X_n \longrightarrow X$ iff, for each $i \in [1, n]$ we have $X_n(i) \longrightarrow X(i)$.
- 25. Let M be a metric space, K a non-empty compact subset of $M, x \in M K$. Show that there exists a $y \in K$ such that d(x, K) = d(x, y).
- 26. Let M be a metric space, K a subset of M. Define

$$\operatorname{diam}(K) := \sup\{d(x, y) : x, y \in K\}.$$

Show that K is bounded iff diam(K) is finite.

- 27. Show that, if K is compact, then $\operatorname{diam}(K)$ is finite and that there are two points $x, y \in K$ such that $d(x, y) = \operatorname{diam}(K)$.
- 28. Let M be a complete metric space, $(E_n)_{n \in \mathbb{N}}$ a sequence of closed sets with the following conditions:
 - (a) $E_{n+1} \subseteq E_n$ for each $n \in \mathbb{N}$,

(b) $\lim_{n \to \infty} \operatorname{diam}(E_n) = 0.$

Show that $\cap_{n \in \mathbb{N}} E_n$ consists of exactly one point.

- 29. If $A, B \subset \mathbb{R}^d$, we define A + B to be the set of all X + Y where $X \in A$ and $Y \in B$. If A and B are closed balls in \mathbb{R}^d , show that A + B is also a closed ball.
- 30. Show that if A and B are both compact, then A + B is also compact.
- 31. Show that if A is compact, B is closed, then A + B is closed.
- 32. If A and B are both closed, give an example to show that A + B is not necessarily closed.
- 33. Let M be a metric space, $A \subset M$ which is not empty. Then, the function $f : M \longrightarrow \mathbb{R}$ given by f(x) = d(x, A) (for all $x \in M$) is continuous.
- 34. Let M be a metric space, A, B two non-empty disjoint closed subsets. Show that there exists a continuous function $f: M \longrightarrow [0, 1]$ such that f(x) = 1 for all $x \in A$ and f(x) = 0 for all $x \in B$.
- 35. Let M be metric space, A, B two non-empty disjoint closed subsets of M. Show that there exist $U, V \in OP(M)$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.
- 36. A metric space M is said to be locally compact is for every $x \in M$ there is a compact set K such that $x \in K^{\circ}$. For example, \mathbb{R}^{n} is a locally compact metric space. If M is a closed subset of \mathbb{R}^{n} , show that it is, as a subspace, a locally compact metric space. What can you say if Mis open? What if it is the intersection of an open and a closed subset of \mathbb{R}^{n} ? (Such subsets are said to be locally closed.)
- 37. Let M be a locally compact metric space, K a non-empty compact subset, $U \in OP(M)$ with $K \subset U$. Show that there is a $O \in OP(M)$ such that \overline{O} is compact with $K \subset O \subset \overline{O} \subset U$.
- 38. Let $X \in \mathbb{R}^N$ and $\varepsilon > 0$. Show that $S(X, \varepsilon)$ is path-connected, hence connected.
- 39. Let M be a compact metric space, N another metric space, $f: M \longrightarrow N$ a continuous bijection. Show that f is a homeomorphism. I.e., f^{-1} is also continuous.

- 40. Let K be a compact metric space, $f : K \longrightarrow K$ an isometry. This means that d(f(x), f(y)) = d(x, y) for all $x, y \in M$. Show that f is a bijection.
- 41. Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ be defined as follows: If $x \in \mathbb{R} \mathbb{Q}$, then f(x) = 0. If $x = \frac{m}{n}$ (in reduced form), then $f(\frac{m}{n}) = \frac{1}{n}$. Find the points where f is continuous.
- 42. Let M be a metric space, $D \subset M$ dense. Let $f : D \longrightarrow \mathbb{R}$ be a function. Show that if f is uniformly continuous then it has a continuous extension to all of M. (This means that there exists some $g : M \longrightarrow \mathbb{R}$ continuous such that g(x) = f(x) for all $x \in D$.)
- 43. Let $f : (0,1) \longrightarrow \mathbb{R}$ be a function. Show that f has a continuous extension to [0,1] iff it is uniformly continuous.
- 44. Let K be a compact metric space, $(U_{\alpha})_{\alpha \in I}$ an open cover of K. Show that there exists some $\varepsilon > 0$ such that any open ball of radius ε is contained in some U_{α} .
- 45. Let M, N be metric spaces, $f : M \longrightarrow N$ be uniformly continuous. If A is a totally bounded subset of M, show that f(A) is also totally bounded.
- 46. Let M, N be metric spaces, $f: M \longrightarrow N$ a function. Suppose that the restriction of f to any compact subset of M is continuous. Show that f is continuous.
- 47. If A is a locally compact subspace of a metric space M, show that A is locally closed.
- 48. Let M be a metric space, A, B be two locally compact subspaces of M. Show that $A \cap B$ is also locally compact.
- 49. In \mathbb{R} give an example of two locally compact subspaces whose union is not locally compact. Give also an example of a locally compact subspace whose complement is not locally compact.
- 50. Give an example of a locally compact metric space which is not complete.
- 51. Let M be a proper metric space. Show that M is complete. If A is a relatively compact subset, show that $C(A, \frac{1}{2})$ is compact.
- 52. If $A \subseteq M$ is connected and $A \subseteq B \subseteq \overline{A}$, show that B is also connected.

- 53. Suppose A_1, A_2, \dots, A_n are connected subset of a metric space M with $A_i \cap A_{i+1} \neq \emptyset$ for all $1 \leq 1 < n$. Show that $\bigcup_{i=1}^n A_i$ is connected.
- 54. If A, B are connected subsets of M and $\overline{A} \cap B \neq \emptyset$, show that $A \cup B$ is connected.
- 55. Let *M* be a metric space, $A, B \in CL(M) \{\emptyset\}, A \cup B$ and $A \cap B$ be connected. Show that both *A* and *B* are connected.
- 56. Let M be a complete metric space, $f: M \longrightarrow M$ a function. Suppose that there is some $c \in (0, 1)$ such that $d(f(x), f(y)) \leq cd(x, y)$ for all $x, y \in M$. Show that there is a unique $x \in M$ such that f(x) = x.
- 57. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by

$$f(x) = x - \frac{\pi}{2} - \arctan x$$

for all $x \in \mathbb{R}$. Show that |f(x) - f(y)| < |x - y| for all $x, y \in \mathbb{R}$. Show also that f does not have any fixed point. Deduce that c < 1 in the previous exercise is essential.

- 58. Assume $E \subseteq \mathbb{R}^n$. A point $X \in \mathbb{R}^n$ is said to be a condensation point of S if for every r > 0 $B(X, r) \cap E$ is uncountable. If E is uncountable, show that there is some $X \in S$ which is a condensation point of E.
- 59. Let $S, T \subseteq \mathbb{R}^n$. Show that $\overline{S \cap T} \subseteq \overline{S} \cap \overline{T}$ and that $S \cap \overline{T} \subseteq \overline{S \cap T}$. (This is true for general metric spaces as well)
- 60. Prove that every $F \in CL(\mathbb{R})$ is the intersection of a sequence of open sets.
- 61. Suppose that $S, T \subseteq \mathbb{R}^n$. Show that $S^\circ \cap T^\circ = (S \cap T)^\circ$ and that $S^\circ \cup T^\circ \subseteq (S \cup T)^\circ$. (This is true for general metric spaces as well)
- 62. Let $S \subseteq \mathbb{R}^n$. We say that a point $X \in \mathbb{R}^n$ is an accumulation point of S if evry r-ball around X contains some element of S different from X itself. Let \mathcal{F} be a family of subsets of \mathbb{R}^n . Let $S = \bigcup_{A \in \mathcal{F}} A$ and $T = \bigcap_{A \in \mathcal{F}} A$. Prove or disprove:
 - (a) If X is an accumulation point of T, then it is an accumulation point of each $A \in \mathcal{F}$.
 - (b) If X is an accumulation point of S, then it is an accumulation point of at least one $A \in \mathcal{F}$.

- 63. Let S be the set of rational numbers in (0, 1). Can one write S as the intersection of a countable family of open subsets of \mathbb{R} ?
- 64. Let S be a subset of a metric space M, A point $X \in S$ is said to be an isolated point of S if $B(X,r) \cap S = \{X\}$ for some r > 0. Now let $S \subseteq \mathbb{R}^n$. Show that the set of isolated points of S is at most countable.
- 65. Let $\mathcal{B} : \{B((x,x),x) : x \in (0,\infty), x \in \mathbb{Q}\}$. Show that \mathcal{B} is an open cover of $(0,\infty) \times (0,\infty) \subseteq \mathbb{R}^2$.
- 66. Let $\mathcal{U}: \{(\frac{1}{n}, \frac{2}{n}) : n \in \mathbb{N}, n \geq 2\}$ is an open cover of (0, 1) which does not have any finite subcover.
- 67. Suppose $S \subseteq \mathbb{R}^n$ has the following property: For every $X \in S$ there is some r > 0 such that $S \cap B(X, r)$ is countable. Prove that S is countable?
- 68. Let $S \subseteq \mathbb{R}^n$ be an uncountable subset. Let T be the set of condensation points of S. Prove that
 - (a) S T is at most countable,
 - (b) T is closed,
 - (c) $S \cap T$ is uncountable, and
 - (d) T does not have any isolated points.
- 69. A set $S \subset \mathbb{R}^n$ is said to be perfect if every point of S is an accumulation point of S. $(S \subseteq \mathbb{R}^n \text{ is perfect iff it is a closed set whithout isolated$ $points.) Prove that if <math>F \subseteq \mathbb{R}^n$ is uncountable and closed, then $F = A \cup B$, where A is perfect and B is countable.
- 70. Let M be a metric space, $A, S \subseteq M$. If $A \subseteq S \subseteq \overline{A}$, we say that A is dense in S. Now let $A, S, T \subseteq M$. If A is dense in S, S is dense in T, show that A is dense in T.
- 71. Suppose M is a metric space. If $A \subseteq M$ and $B \in OP(M)$ are dense in M, show that $A \cap B$ is also dense in M.
- 72. Let M be metric space. Assume $K \subseteq L \subseteq M$. Show that K is compact in L iff it is compact in M.
- 73. Let $a, b \in \mathbb{Q}^c$ with $a < b, S = \mathbb{Q} \cap (a, b)$. Show that S is cloed and bounded in \mathbb{Q} and that it is not compact.

- 74. Let M be a metric space, $A, B \subseteq M$, \mathcal{F} be a family of subsetes of M. The set $\partial(A) = \overline{A} - A^{\circ}$ is called the boundary of A. Prove that
 - (a) $A^{\circ} = M \overline{(M-A)},$
 - (b) $(M-A)^{\circ} = M \overline{A},$
 - (c) $(A^{\circ})^{\circ} = A^{\circ},$
 - (d) $(\bigcap_{i=1}^{n} A_i)^\circ = \bigcap_{i=1}^{n} A_i^\circ,$
 - (e) $(\bigcap_{A \in \mathcal{F}} A)^{\circ} \subseteq \bigcap_{A \in \mathcal{F}} A^{\circ}$, and that the inclusion can be proper,
 - (f) $(\bigcup_{A\in\mathcal{F}}A)^{\circ}\subseteq \bigcup_{A\in\mathcal{F}}A^{\circ}$, and that the inclusion can be proper,
 - (g) $(\partial(A))^{\circ} = \emptyset$ if $A \in OP(M)$ or $A \in CL(M)$.
 - (h) If A is closed and $A^{\circ} = B^{\circ} = \emptyset$, then $(A \cup B)^{\circ} = \emptyset$,
 - (i) If $\overline{A} \cap \overline{B} = \emptyset$, then $\partial(A \cup B) = \partial(A) \cup \partial(B)$.
- 75. Let M be metric space. If $x_n \longrightarrow x$ and $y_n \longrightarrow y$ in M, show that $d(x_n y_n) \longrightarrow d(x, y)$.
- 76. A sequence $(x_n)_n$ in \mathbb{R} satisfies $7x_{n+1} = x_n^3 + 6$ for $n \in \mathbb{N}$. If $x_1 = \frac{1}{2}$, show that $(x_n)_n$ converges and find its limit. What if $x_1 = \frac{5}{2}$?
- 77. If $x_1 \in (0,1)$ and $_{n+1} = 1 \sqrt{1 x_n}$ for all $n \ge 1$, show that $(x_n)_n$ is decreasing with limit 0. Show also that $\frac{x_{n+1}}{x_n} \longrightarrow \frac{1}{2}$.
- 78. If $a_{n+2} = \frac{a_n + a_{n+1}}{2}$ for all $n \ge 1$, show that $a_n \longrightarrow \frac{a_1 + 2a_2}{3}$.
- 79. If $|a_n| < 2$ and $|a_{n+1} a_n| \le \frac{1}{8} |a_{n+1}^2 a_n^2|$ for all $n \ge 1$, show that $(a_n)_n$ converges.
- 80. Let $F : \mathbb{N} \longrightarrow \mathbb{R}^d$ be a sequence with $F = (f_1, f_2, \cdots, f_d)$. Show that $F(n) \longrightarrow P \in \mathbb{R}^d$ iff $f_i(n) \longrightarrow d_i$ as $n \longrightarrow \infty$ for each $i = 1, 2, \cdots, d$.
- 81. Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ satisfies f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f is continuous at one point, show that f is continuous and that there is some $a \in \mathbb{R}$ with f(x) = ax for all $x \in \mathbb{R}$.
- 82. Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b] \longrightarrow \mathbb{R}$. We say that f is convex if for all $x, y \in [a, b]$ and $\alpha \in [0, 1]$ we have $f((1 \alpha)x + \alpha y) \leq (1 \alpha)f(x) + \alpha f(y)$. Show that a convex function $f : [a, b] \longrightarrow \mathbb{R}$ is continuous.
- 83. Let $S \subseteq \mathbb{R}^n$ be open and connected. Let T be a connected component of $\mathbb{R}^n S$. Show that $\mathbb{R}^n T$ is connected.

- 84. Let M be a metric space, $x \in M$ and U(x) the connected component of M containing x. Show that $U(x) \in CL(M)$.
- 85. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be linear. Show that T is uniformly continuous.
- 86. Let E, F be normed vector spaces, $T : E \longrightarrow F$ linear. Show that TFAE:
 - (a) T is continuous at one point,
 - (b) T is uniformly continuous,
 - (c) T maps bounded sets to bounded sets.
- 87. Let $|\cdot|$ be a norm on \mathbb{R}^n . Show that there are $m, M \in (0, \infty)$ such that $m |X| \leq ||X|| \leq M |X|$ for all $x \in \mathbb{R}^n$. (||X|| denotes the euclidean norm of $X \in \mathbb{R}^n$.) Hence all norms on \mathbb{R}^n are equivalent.
- 88. Let K be a compact metric space, $f: K \longrightarrow K$ be a function with

$$d(f(x), f(y)) < d(x, y)$$

for all $x, y \in K$. Does f necessarily have a fixed point?

- 89. Let K be a compact metric space. We now know that every continuous complex function on K is bounded. Hence, if C(K) denotes the set of continuous complex functions on K, it is a vector subspace of $\ell^{\infty}(K)$. Is C(K) closed in $\ell^{\infty}(K)$.
- 90. Suppose M is a locally compact separable metric space. Show that there exists a sequence $(K_n)_n$ of compact subsets such that
 - (a) $K_n \subset K_{n+1}^{\circ}$ for all $n \in \mathbb{N}$,
 - (b) $M = \bigcup_n K_n$, and that
 - (c) every compact subset of M is contained in at least one of the K_n 's.
- 91. Let E, F be metric spaces, $f : E \longrightarrow F$ a function. The graph of f is defined to be the set $\{(x, f(x)) : x \in E\}$. If f is continuous, show that the graph of f is closed. Suppose that E is compact. Show that f is continuous iff the graph of f is compact.
- 92. Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a function with the intermediate value property: If f(a) < c < f(b), there is some x between a and b such that f(x) = c. Suppose also that $f^{-1}(\{r\})$ is closed for every $r \in \mathbb{Q}$. Show that f is continuous.

93. Suppose that $f:(a,b) \longrightarrow \mathbb{R}$ is continuous and that

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$$

for all $x, y \in (a, b)$. Show that f is convex.

94. Find the limits if they exist:

(a)

$$\lim_{(x,y)\to(0,0)} \frac{x^4 + y^4}{x^2 + y^2}$$
(b)

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$
(c)

$$\lim_{\|X\|\to\infty} \frac{\|X - X_1\|}{\|X - X_2\|}$$

where X_1, X_2 are given elements of \mathbb{R}^n .

- 95. Show that $\lim_{X \to P} f(X) = +\infty$ iff $\lim_{X \to P} \frac{1}{f(X)} = 0$ and f(X) > 0 for every X in some punctured neighborhood of P.
- 96. Let $C \subseteq \mathbb{R}^n$ be a closed, convex non-empty subset, $P \in \mathbb{R}^n C$. Show that there is exactly one point $X \in C$ such that d(P, C) = d(P, X).
- 97. Suppose that $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is continuous, that f(X) > 0 for all $X \neq 0$ and that f(cX) - cf(X) for all $X \in \mathbb{R}^n$ and c > 0. Show that there are $a, b \in (0, \infty)$ such that $a ||X|| \leq f(X) \leq b ||X||$ for all $X \in \mathbb{R}^n$.
- 98. If A, B are two non-empty compact subsets of \mathbb{R}^n , define d(A, B) to be the smallest number a with the following property: For every $X \in A$ there is some $Y \in B$ such that $||X - Y|| \leq a$ and for every $Y \in B$ there exists some $X \in A$ such that $||X - Y|| \leq a$. Show that d is a metric on the space $\mathcal{K}(\mathbb{R}^n)$ of all non-empty compact subsets of \mathbb{R}^n . Is this space complete? If $\mathcal{KC}(\mathbb{R}^n)$ denotes the set of elements of $\mathcal{K}(\mathbb{R}^n)$ which are also convex, is it closed?
- 99. Suppose that $K \subset \mathbb{R}^n$ is compact, convex, symmetric about 0 and that K contains a euclidean neighborhood of 0. Let |0| = 0 and define, for $X \neq 0$,

$$|X| := \frac{1}{\max\{t : tX \in K\}}.$$

Show that $X \mapsto |X|$ is a norm on \mathbb{R}^n .

100. Let M be a metric space, $x \in M$, and $f, g : M \longrightarrow \mathbb{C}$ two functions. If f is continuous at x, and $\lim_{y \longrightarrow x} g(y) = 0$, show that

$$\lim_{y \longrightarrow x} f(y)g(y) = 0.$$

- 101. Suppose f is differentiable in (a, b).
 - (a) If $f'(x) \ge 0$ for all $x \in (a, b)$, show that f is monotonically increasing.
 - (b) If $f'(x) \leq 0$ for all $x \in (a, b)$, show that f is monotonically decreasing.
 - (c) If f'(x) = 0 for all $x \in (a, b)$, show that f is constant.
- 102. Let $f : (a, b) \longrightarrow \mathbb{C}$ be a function, $x \in (a, b)$. We can define the derivative of f at x in the same way as the real-valued case. We could also write f = u + iv where u, v are real valued functions. Show that then f is differentiable iff both u and v are differentiable and in this case we have

$$f'(x) = u'(x) + iv'(x).$$

- 103. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Show that f is constant.
- 104. Let $g : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function with a bounded derivative. Let $\varepsilon > 0$ and define $f(x) = x + \varepsilon g(x)$ for all $x \in \mathbb{R}$. Prove that f is a one-to-one function if ε is small enough.
- 105. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_n}{n+1} = 0$$

where $C_0, C_1, \dots, C-n$ are real constants, prove that the equation

$$C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n = 0$$

has at least one root between 0 and 1.

- 106. Suppose $f: (0, \infty) \longrightarrow \mathbb{R}$ is differentiable and $f'(x) \longrightarrow 0$ as $x \longrightarrow \infty$. Show that $f(x+1) - f(x) \longrightarrow 0$ as $x \longrightarrow \infty$.
- 107. Suppose

- (a) f is continuous for $x \ge 0$,
- (b) f'(x) exists for x > 0,
- (c) f(0) = 0,
- (d) f' is monotonically incerasing.

If $g(x) = \frac{f(x)}{x}$ for all x > 0, show that g is monotonically increasing.

108. Suppose f'(x) and g'(x) exist, $g'(x) \neq 0$, f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$$

Show also that this holds for complex functions as well.

- 109. Let f be a continuous real function. Suppose that f'(x) exists for all $x \neq 0$ and that $f'(x) \longrightarrow 3$ as $x \longrightarrow 0$. Does f'(0) exist?
- 110. Suppose f and g are complex differentiable functions on (0, 1),

$$f(x) \longrightarrow 0, \ g(x) \longrightarrow 0, \ f'(x) \longrightarrow A \text{ and } g'(x) \longrightarrow B$$

as $x \longrightarrow 0$. $(B \neq 0)$ Show that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}$$

111. Suppose f is defined in a neighborhood of x and suppose that f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

Show that the limit may exist although even if f''(x) does not.

- 112. If $f(x) = |x|^3$, compute f'(x) and f''(x) for all real x and show that f''(0) does not exist.
- 113. Suppose a and c are real numbers, c > 0, and f is defined on [-1, 1] by

$$f(x) = \begin{cases} x^{a} \sin(x^{-c}) & \text{(if } x \neq 0), \\ 0 & \text{(if } x = 0). \end{cases}$$

Prove the following statements:

- (a) f is continuous iff a > 0.
- (b) f'(0) exists iff a > 1.
- (c) f' is bounded iff a > 1 + c.
- (d) f''(0) exists iff a > 2 + c.
- (e) f'' is bounded iff $a \leq 2 + 2c$.
- (f) f'' is continuous iff a > 2 + 2c.
- 114. Suppose $a \in \mathbb{R}$, f is a twice-differentiable function on (a, ∞) , and M_0 , M_1 , M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively, on (a, ∞) . Prove that

$$M_1^2 \le 4M_0M_2.$$

115. Suppose f is a real, twice-differentiable function on [-1, 1], such that

$$f(-1) = 0,$$
 $f(0) = 0,$ $f(1) = 1,$ $f'(0) = 0.$

Prove that $f'''(x) \ge 3$ for some $x \in (-1, 1)$.

- 116. Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a function.
 - (a) If f is differentiable and $f(t) \neq 1$ for all $t \in \mathbb{R}$, show that f can have at most one fixed point.
 - (b) Show that the function $f(t) = t + (1 + e^t)^{-1}$ has no fixed point, although 0 < f'(t) < 1 for all real t.
 - (c) If there is a constant A < 1 such that $|f'(t)| \leq A$ for all real t, show that f must have a fixed point.
- 117. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number A such that $|f'(x)| \le A |f(x)|$ for all $x \in [a, b]$. Prove that f(x) = 0 for all $x \in [a, b]$.
- 118. Let $f:(a,b) \longrightarrow \mathbb{R}$ be differentiable with a bounded derivative. Show that f is uniformly continuous.
- 119. Suppose $f: (a, \infty) \longrightarrow \mathbb{R}$ is differentiable $(a \in \mathbb{R})$, and $\lim_{x \to \infty} f'(x) = \infty$. Show that f is not uniformly continuous.
- 120. Suppose $f: (a, \infty) \longrightarrow \mathbb{R}$ is differentiable. If $\lim_{x\to\infty} f'(x) = g$, show that $\lim_{x\to\infty} \frac{f(x)}{x} = g$ as well.

- 121. Suppose f : (0,1] is differentiable with |f'(x)| < 1 for all $x \in (0,1]$. Define $a_n = f(\frac{1}{n})$ for all $n \in \mathbb{N}$. Show that $(a_n)_n$ converges.
- 122. Suppose $f : (a, b) \longrightarrow \mathbb{R}$ is differentiable and $c \in (a, b)$. Assume that $\lim_{x\to c} f'(x)$ exists. Show that $\lim_{x\to c} f'(x) = f'(c)$.
- 123. Suppose $f : (a, b) \longrightarrow \mathbb{R}$ is continuous and is differentiable except possibly at $c \in (a, b)$. If $f'(x) \longrightarrow A$ as $x \longrightarrow c$, show that f is also differentiable at c and f'(c) = A.
- 124. For each $n \in \mathbb{N}$, let $g_n : [0,1] \longrightarrow \mathbb{R}$ be an integrable function. Define $G_n(x) = \int_0^x g_n(t) dt$ for all $n \in \mathbb{N}$ and $x \in [0,1]$. Show that $(G_n)_n$ has a uniformly convergent subsequence.
- 125. Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

- (a) Show that f is smooth.
- (b) Is f analytic?
- (c) Define

$$g(x) = e^2 f(1-x) f(x+1).$$

Show that g is smooth, identitally zero outside (-1, 1), positive on (-1, 1), and takes the value 1 at x - 0.

- (d) Show that $g(x) = e^{-2x^2/(x^2-1)}$ for all |x| < 1.
- 126. Let $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable functions for each $n \in \mathbb{N}$ with $f_n(0) = 0$ and $|f'_n(x)| \leq 2$ for all n, x. If $f_n \longrightarrow g$ pointwise, show that g is continuous.
- 127. Suppose $(f_n)_n$ is a sequence of differentiable real functions on a compact interval [a, b] such that $|f_n(x)| \leq M$ and $|f'_n(x)| \leq M$ for all n, x. $(M \in \mathbb{R} \text{ is fixed.})$ Show that then $(f_n)_n$ has a uniformly convergent subsequence.
- 128. Let (f_n) be a sequence of functions defined on an open interval I satisfying $|f_n(x)| \leq F(x)$ and $|f'_n(x)| \leq G(x)$ for all n, x, where $F, G: I \longrightarrow \mathbb{R}$ are constinuous functions. Prove that (f_n) has a subsequence which converges uniformly on every compact subset of I.

- 129. Prove that the set of polynomials of degree $\leq N$ with coefficients in [-1, 1] is uniformly bounded and uniformly equicontinuous on any compact interval.
- 130. Prove that the family of polynomials P(x) of degree $\leq N$ satisfying $|P(x)| \leq 1$ on [0, 1] is uniformly equicontinuous on [0, 1].
- 131. If $(f_n)_n$ is a uniformly equicontinuous sequence of functions on a compact interval and $f_n \longrightarrow f$ pointwise, prove that $f_n \longrightarrow f$ uniformly.
- 132. Let F be finite set of continuous functions on a compact interval. Show that $\mathcal{F} := \{\sum_{f \in F} a_f f : |a_f| \leq 1 \text{ for all } f \in F\}$ is uniformly bounded and uniformly equicontinuous.
- 133. Let $(f_n)_n$ be a sequence of uniformly bounded uniformly equicontinuous functions on a bounded open interval (a, b). Show that the functions can be extended to the compact interval [a, b] so that they are still uniformly bounded and uniformly equicontinuous.
- 134. Give an example of a sequence of functions that is unformly equicontinuous but not uniformly bounded.
- 135. Give an example of a sequence of real functions on \mathbb{R} that is uniformly bounded and uniformly equicontinuous but doesn't have any uniformly convergent subsequence.
- 136. Prove that the sequence $f_n(x) = \sin nx$ is not uniformly equicontinuous on any non-trivial compact interval.
- 137. Suppose that $(f_n)_n$ is a sequence of functions on a compact interval that is pointwise bounded and pointwise equicontinuous. Show that it has a subsequence which converges pointwise.
- 138. Suppose that $f:[0,1] \longrightarrow \mathbb{R}$ is continuous. If f satsifies

$$\int_0^x f(t)dt = x \sin x + \int_0^x \frac{f(t)}{1+t^2} dt,$$

find f.

139. Find

$$\lim_{x \to 3} \frac{x}{x-3} \int_0^x \frac{\sin t}{t} dt$$

140. Find the maximum value of the function x+y on the unit circle $\{(x, y) : x^2 + y^2 = 1\}$.

141. Find the largest area of a rectangle inscribed in the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(Here a, b > 0)

- 142. Let $A = \{(x, y) : y^2 = 2x\}$. If $p = (1, 4) \in \mathbb{R}^2$, find d(p, A).
- 143. Suppose $f:[a,b] \longrightarrow \mathbb{R}$ is continuous. Show that

$$\lim_{p \to \infty} \left(\int_a^b \left| f(x) \right|^p dx \right)^{1/p} = \| f \|_{\infty} \,.$$

144. Show that, for $m, n \in \mathbb{N}$, we have

$$\int_{-\pi}^{\pi} \sin mx \cos nx dx = 0.$$

145. Let $m, n \in \mathbb{N}$ with $m \neq n$. Show that

$$\int_{-\pi}^{\pi} \sin mx \sin nx dx = \int_{-\pi}^{\pi} \cos mx \cos nx dx = 0.$$

146. Suppose that $f:[0,1] \longrightarrow \mathbb{R}$ is continuous. Prove that

$$\int_{0}^{\pi} x f(\sin x) dx = \frac{1}{2}\pi \int_{0}^{\pi} f(\sin x) dx.$$

147. Suppose $a, b \in \mathbb{R}$ with $|a| \neq |b|$. Prove that

$$\lim_{x \to 0} \frac{1}{x} \int_0^x \sin at \cos bt dt = 0.$$

148. Let f be a continuous function on [a, b]. Suppose there exists a constant K such that

$$|f(x)| \le K \int_{a}^{x} |f(t)| \, dt$$

for all $x \in [a, b]$. Show that f(x) = 0 for all $x \in [a, b]$.

149. Suppose $f:[a,b] \longrightarrow \mathbb{R}$ is twice continuously differentiable. Show that

$$\int_{a}^{b} x f''(x) dx = bf'(b) - f(b) + f(a) - af'(a).$$

150. Let $m, n \in \mathbb{N}$. Show that

$$\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx$$

- 151. For $f, g \in C([a, b])$ define $d_1(f, g) = \int_a^b |f(x) g(x)| dx$. Show that d_1 is a metric on C([a, b]).
- 152. Prove that

•

$$\lim_{h \to 0} \int_{-a}^{a} \frac{h}{h^2 + x^2} dx = \pi.$$

153. Prove that, if $f: [-1, 1] \longrightarrow \mathbb{R}$ is continuous, then

$$\lim_{h \to 0} \int_{-1}^{1} \frac{h}{h^2 + x^2} f(x) dx = \pi f(0).$$