Introduction to Analysis

Selçuk Demir

Fall 2008

1. Let (M, d) be a metric space. For $x, y \in M$ define

$$
\rho(x, y)=\frac{d(x, y)}{1+d(x, y)} .
$$

Show that ρ is also a metric on M. Show that these two metrices are equivalent (i.e. they generate the same open sets).
2. Show that a compact space is bounded.
3. Let A be a closed subset of M. For $x \in M$ define

$$
f(x)=d(x, A)=\inf \{d(x, y): y \in A\} .
$$

Show that $d(x, y) \geq|f(x)-f(y)|$ for all $x, y \in M$. Show also that $f(x)=0$ iff $x \in A$.
4. Suppose that every sequence in M has a convergent subsequence. If $\varepsilon>0$ is given show that any subset A with the property that $d(x, y) \geq \varepsilon$ for all $x, y \in A$ is finite.
5. Suppose that K is a compact subset of M and B is a closed subset of M with $K \cap B=\emptyset$. Define $d(K, M)$ to be $\inf \{d(k, b): k \in K, b \in B\}$. Show that $d(K, M)>0$. Show that one can find metric spaces where A, B are disjoint non-empty closed subsets of M with $d(A, B)=0$.
6. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in M converging to some $x \in M$. Show that $\left\{x_{n}: n \in \mathbb{N}\right\} \cup\{x\}$ is compact.
7. Show that, if $K \subset \mathbb{R}^{n}$ is closed and bounded, every sequence in K has a subsequence which converges to some point of K.
8. Let $K \subset \mathbb{R}^{n}$. Show that K is bounded iff it is totally bounded.
9. Show that in a general metric space a bounded set is not necessarily totally bounded.
10. Let X and Y be metric spaces. Put $Z=X \times Y$ and

$$
d((x, y),(z, t))=d_{X}(x, z)+d_{Y}(y, t)
$$

for all $(x, y),(z, t) \in Z$. Show that Z is a metric space with this metric. Show that if $U \subset X$ and $V \subset Y$ then $U \times V$ is open in Z iff $U \in O P(X)$ and $V \in O P(Y)$.
11. Let X be metric space and $\Delta:=\{(x, x): x \in X\}$. Show that Δ is closed in $X \times X$.
12. Let E be any set which is not empty. $X:=\ell^{\infty}(E)$ is defined to be the space of all bounded complex functions on E. For $f, g \in X$ we define

$$
d(f, g)=\sup _{p \in E}|f(p)-g(p)| .
$$

Show that X is a complete metric space.
13. Let X be real or complex vector space. By a norm on X we mean a function $\|\cdot\|: X \longrightarrow \mathbb{R}$ with the following properties: (a) $\|x\| \geq 0$ for all $x \in X$; (b) $\|x\|=0$ iff $x=0$; (c) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$; (d) $\|a x\|=|a|\|x\|$ for all numbers a and $x \in X$. Show that if X is a normed vector space, it becomes in a natural way a meric space by putting $d(x, y)=\|x-y\|$.
14. For $X \in \mathbb{R}^{n}$ define $\|X\|_{1}=\sum_{i}\left|x_{i}\right|$ and $\|X\|_{2}:=\sqrt{\sum_{i}\left|x_{i}\right|^{2}}$ and $\|X\|_{\infty}=\sup _{i}\left|x_{i}\right|$. All these norms are equivalent in the sense that they generate the same open sets.
15. Let V be a vector space, $\left\|\|_{1}\right.$ and $\| \|_{2}$ two norms on V. Show that these two norms are equivalent iff there exist $M, N>0$ such that

$$
M\|x\|_{1} \leq\|x\|_{2} \leq N\|x\|_{2}
$$

for all $x \in V$.
16. Let X and Y be metric spaces, $f: X \longrightarrow Y$. We say that f preserves convergence if whenever $x_{n} \longrightarrow x$ in $X,\left(f\left(x_{n}\right)\right)_{n}$ also converges and $f\left(x_{n}\right) \longrightarrow f(x)$. If K is a compact subset of X and f preserves convergence, show that $f(K)$ must be compact.
17. Let U, V be two dense open subsets of a metric space X. Is $U \cap V$ dense in X ?
18. Let X, Y be metric spaces. Show that $X \times Y$ is compact iff X and Y are compact.
19. Let X_{n} be a metric space for every $n \in \mathbb{N}$. Let $X:=\prod_{i=1}^{\infty} X_{n}$ be the space of all sequences $x=\left(x_{n}\right)_{n}$ in $\cup_{n \in \mathbb{N}} X_{n}$ such that $x_{n} \in X_{n}$ for each $n \in \mathbb{N}$. On X define

$$
d(x, y):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{d_{n}\left(x_{n}, y_{n}\right)}{\left(1+d_{n}\left(x_{n}, y_{n}\right)\right)}
$$

for each $x, y \in X$. Show that X is a metric space. Show also that X is compact iff so is each X_{n}.
20. Show that a subspace of a separable metric space is separable.
21. Let M be a separable metric space. Show that if $\left(U_{\alpha}\right)_{\alpha \in I}$ is a family of pairwise disjoint non-empty open subsets of M, then I should be countable.
22. Show that if S is infinite, the space $\ell^{\infty}(S)$ is not separable.
23. If M is a connected metric space and if M contains at least two points, show that M is uncountable.
24. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\mathbb{R}^{d}, X \in \mathbb{R}^{d}$. Show that $X_{n} \longrightarrow X$ iff, for each $i \in[1, n]$ we have $X_{n}(i) \longrightarrow X(i)$.
25. Let M be a metric space, K a non-empty compact subset of $M, x \in$ $M-K$. Show that there exists a $y \in K$ such that $d(x, K)=d(x, y)$.
26. Let M be a metric space, K a subset of M. Define

$$
\operatorname{diam}(K):=\sup \{d(x, y): x, y \in K\} .
$$

Show that K is bounded iff $\operatorname{diam}(K)$ is finite.
27. Show that, if K is compact, then $\operatorname{diam}(K)$ is finite and that there are two points $x, y \in K$ such that $d(x, y)=\operatorname{diam}(K)$.
28. Let M be a complete metric space, $\left(E_{n}\right)_{n \in \mathbb{N}}$ a sequence of closed sets with the following conditions:
(a) $E_{n+1} \subseteq E_{n}$ for each $n \in \mathbb{N}$,
(b) $\lim _{n \longrightarrow \infty} \operatorname{diam}\left(E_{n}\right)=0$.

Show that $\cap_{n \in \mathbb{N}} E_{n}$ consists of exactly one point.
29. If $A, B \subset \mathbb{R}^{d}$, we define $A+B$ to be the set of all $X+Y$ where $X \in A$ and $Y \in B$. If A and B are closed balls in \mathbb{R}^{d}, show that $A+B$ is also a closed ball.
30. Show that if A and B are both compact, then $A+B$ is also compact.
31. Show that if A is compact, B is closed, then $A+B$ is closed.
32. If A and B are both closed, give an example to show that $A+B$ is not necessarily closed.
33. Let M be a metric space, $A \subset M$ which is not empty. Then, the function $f: M \longrightarrow \mathbb{R}$ given by $f(x)=d(x, A)$ (for all $x \in M$) is continuous.
34. Let M be a metric space, A, B two non-empty disjoint closed subsets. Show that there exists a continuous function $f: M \longrightarrow[0,1]$ such that $f(x)=1$ for all $x \in A$ and $f(x)=0$ for all $x \in B$.
35. Let M be metric space, A, B two non-empty disjoint closed subsets of M. Show that there exist $U, V \in O P(M)$ such that $A \subset U, B \subset V$ and $U \cap V=\emptyset$.
36. A metric space M is said to be locally compact is for every $x \in M$ there is a compact set K such that $x \in K^{\circ}$. For example, \mathbb{R}^{n} is a locally compact metric space. If M is a closed subset of \mathbb{R}^{n}, show that it is, as a subspace, a locally compact metric space. What can you say if M is open? What if it is the intersection of an open and a closed subset of \mathbb{R}^{n} ? (Such subsets are said to be locally closed.)
37. Let M be a locally compact metric space, K a non-empty compact subset, $U \in O P(M)$ with $K \subset U$. Show that there is a $O \in O P(M)$ such that \bar{O} is compact with $K \subset O \subset \bar{O} \subset U$.
38. Let $X \in \mathbb{R}^{N}$ and $\varepsilon>0$. Show that $S(X, \varepsilon)$ is path-connected, hence connected.
39. Let M be a compact metric space, N another metric space, $f: M \longrightarrow$ N a continuous bijection. Show that f is a homeomorphism. I.e., f^{-1} is also continuous.
40. Let K be a compact metric space, $f: K \longrightarrow K$ an isometry. This means that $d(f(x), f(y))=d(x, y)$ for all $x, y \in M$. Show that f is a bijection.
41. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined as follows: If $x \in \mathbb{R}-\mathbb{Q}$, then $f(x)=0$. If $x=\frac{m}{n}$ (in reduced form), then $f\left(\frac{m}{n}\right)=\frac{1}{n}$. Find the points where f is continuous.
42. Let M be a metric space, $D \subset M$ dense. Let $f: D \longrightarrow \mathbb{R}$ be a function. Show that if f is uniformly continuous then it has a continuous extension to all of M. (This means that there exists some $g: M \longrightarrow \mathbb{R}$ continuous such that $g(x)=f(x)$ for all $x \in D$.)
43. Let $f:(0,1) \longrightarrow \mathbb{R}$ be a function. Show that f has a continuous extension to $[0,1]$ iff it is uniformly continuous.
44. Let K be a compact metric space, $\left(U_{\alpha}\right)_{\alpha \in I}$ an open cover of K. Show that there exists some $\varepsilon>0$ such that any open ball of radius ε is contained in some U_{α}.
45. Let M, N be metric spaces, $f: M \longrightarrow N$ be uniformly continuous. If A is a totally bounded subset of M, show that $f(A)$ is also totally bounded.
46. Let M, N be metric spaces, $f: M \longrightarrow N$ a function. Suppose that the restriction of f to any compact subset of M is continuous. Show that f is continuous.
47. If A is a locally compact subspace of a metric space M, show that A is locally closed.
48. Let M be a metric space, A, B be two locally compact subspaces of M. Show that $A \cap B$ is also locally compact.
49. In \mathbb{R} give an example of two locally compact subspaces whose union is not locally compact. Give also an example of a locally compact ssubspace whose complement is not locally compact.
50. Give an example of a locally compact metric space which is not complete.
51. Let M be a proper metric space. Show that M is complete. If A is a relatively compact subset, show that $C\left(A, \frac{1}{2}\right)$ is compact.
52. If $A \subseteq M$ is connected and $A \subseteq B \subseteq \bar{A}$, show that B is also connected.
53. Suppose $A_{1}, A_{2}, \cdots, A_{n}$ are connected subset of a metric space M with $A_{i} \cap A_{i+1} \neq \emptyset$ for all $1 \leq 1<n$. Show that $\cup_{i=1}^{n} A_{i}$ is connected.
54. If A, B are connected subsets of M and $\bar{A} \cap B \neq \emptyset$, show that $A \cup B$ is connected.
55. Let M be a metric space, $A, B \in C L(M)-\{\emptyset\}, A \cup B$ and $A \cap B$ be connected. Show that both A and B are connected.
56. Let M be a complete metric space, $f: M \longrightarrow M$ a function. Suppose that there is some $c \in(0,1)$ such that $d(f(x), f(y)) \leq c d(x, y)$ for all $x, y \in M$. Show that there is a unique $x \in M$ such that $f(x)=x$.
57. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by

$$
f(x)=x-\frac{\pi}{2}-\arctan x
$$

for all $x \in \mathbb{R}$. Show that $|f(x)-f(y)|<|x-y|$ for all $x, y \in \mathbb{R}$. Show also that f does not have any fixed point. Deduce that $c<1$ in the previous exercise is essential.
58. Assume $E \subseteq \mathbb{R}^{n}$. A point $X \in \mathbb{R}^{n}$ is said to be a condensation point of S if for every $r>0 B(X, r) \cap E$ is uncountable. If E is uncountable, show that there is some $X \in S$ which is a condensation point of E.
59. Let $S, T \subseteq \mathbb{R}^{n}$. Show that $\overline{S \cap T} \subseteq \bar{S} \cap \bar{T}$ and that $S \cap \bar{T} \subseteq \overline{S \cap T}$. (This is true for general metric spaces as well)
60. Prove that every $F \in C L(\mathbb{R})$ is the intersection of a sequence of open sets.
61. Suppose that $S, T \subseteq \mathbb{R}^{n}$. Show that $S^{\circ} \cap T^{\circ}=(S \cap T)^{\circ}$ and that $S^{\circ} \cup T^{\circ} \subseteq(S \cup T)^{\circ}$. (This is true for general metric spaces as well)
62. Let $S \subseteq \mathbb{R}^{n}$. We say that a point $X \in \mathbb{R}^{n}$ is an accumulation point of S if evry r-ball around X contains some element of S different from X itself. Let \mathcal{F} be a family of subsets of \mathbb{R}^{n}. Let $S=\cup_{A \in \mathcal{F}} A$ and $T=\cap_{A \in \mathcal{F}} A$. Prove or disprove:
(a) If X is an accumulation point of T, then it is an accumulation point of each $A \in \mathcal{F}$.
(b) If X is an accumulation point of S, then it is an accumulation point of at least one $A \in \mathcal{F}$.
63. Let S be the set of rational numbers in $(0,1)$. Can one write S as the intersection of a countable family of open subsets of \mathbb{R} ?
64. Let S be a subset of a metric space M, A point $X \in S$ is said to be an isolated point of S if $B(X, r) \cap S=\{X\}$ for some $r>0$. Now let $S \subseteq \mathbb{R}^{n}$. Show that the set of isolated points of S is at most countable.
65. Let $\mathcal{B}:\{B((x, x), x): x \in(0, \infty), x \in \mathbb{Q}\}$. Show that \mathcal{B} is an open cover of $(0, \infty) \times(0, \infty) \subseteq \mathbb{R}^{2}$.
66. Let $\mathcal{U}:\left\{\left(\frac{1}{n}, \frac{2}{n}\right): n \in \mathbb{N}, n \geq 2\right\}$ is an open cover of $(0,1)$ which does not have any finite subcover.
67. Suppose $S \subseteq \mathbb{R}^{n}$ has the following property: For every $X \in S$ there is some $r>0$ such that $S \cap B(X, r)$ is countable. Prove that S is countable?
68. Let $S \subseteq \mathbb{R}^{n}$ be an uncountable subset. Let T be the set of condensation points of S. Prove that
(a) $S-T$ is at most countable,
(b) T is closed,
(c) $S \cap T$ is uncountable, and
(d) T does not have any isolated points.
69. A set $S \subset \mathbb{R}^{n}$ is said to be perfect if every point of S is an accumulation point of S. ($S \subseteq \mathbb{R}^{n}$ is perfect iff it is a closed set whithout isolated points.) Prove that if $F \subseteq \mathbb{R}^{n}$ is uncountable and closed, then $F=$ $A \cup B$, where A is perfect and B is countable.
70. Let M be a metric space, $A, S \subseteq M$. If $A \subseteq S \subseteq \bar{A}$, we say that A is dense in S. Now let $A, S, T \subseteq M$. If A is dense in S, S is dense in T, show that A is dense in T.
71. Suppose M is a metric space. If $A \subseteq M$ and $B \in O P(M)$ are dense in M, show that $A \cap B$ is also dense in M.
72. Let M be metric space. Assume $K \subseteq L \subseteq M$. Show that K is compact in L iff it is compact in M.
73. Let $a, b \in \mathbb{Q}^{c}$ with $a<b, S=\mathbb{Q} \cap(a, b)$. Show that S is cloed and bounded in \mathbb{Q} and that it is not compact.
74. Let M be a metric space, $A, B \subseteq M, \mathcal{F}$ be a family of subsetes of M. The set $\partial(A)=\bar{A}-A^{\circ}$ is called the boundary of A. Prove that
(a) $A^{\circ}=M-\overline{(M-A)}$,
(b) $(M-A)^{\circ}=M-\bar{A}$,
(c) $\left(A^{\circ}\right)^{\circ}=A^{\circ}$,
(d) $\left(\cap_{i=1}^{n} A_{i}\right)^{\circ}=\cap_{i=1}^{n} A_{i}^{\circ}$,
(e) $\left(\cap_{A \in \mathcal{F}} A\right)^{\circ} \subseteq \cap_{A \in \mathcal{F}} A^{\circ}$, and that the inclusion can be proper,
(f) $\left(\cup_{A \in \mathcal{F}} A\right)^{\circ} \subseteq \cup_{A \in \mathcal{F}} A^{\circ}$, and that the inclusion can be proper,
(g) $(\partial(A))^{\circ}=\emptyset$ if $A \in O P(M)$ or $A \in C L(M)$.
(h) If A is closed and $A^{\circ}=B^{\circ}=\emptyset$, then $(A \cup B)^{\circ}=\emptyset$,
(i) If $\bar{A} \cap \bar{B}=\emptyset$, then $\partial(A \cup B)=\partial(A) \cup \partial(B)$.
75. Let M be metric space. If $x_{n} \longrightarrow x$ and $y_{n} \longrightarrow y$ in M, show that $d\left(x_{n} y_{n}\right) \longrightarrow d(x, y)$.
76. A sequence $\left(x_{n}\right)_{n}$ in \mathbb{R} satisfies $7 x_{n+1}=x_{n}^{3}+6$ for $n \in \mathbb{N}$. If $x_{1}=\frac{1}{2}$, show that $\left(x_{n}\right)_{n}$ converges and find its limit. What if $x_{1}=\frac{5}{2}$?
77. If $x_{1} \in(0,1)$ and ${ }_{n+1}=1-\sqrt{1-x_{n}}$ for all $n \geq 1$, show that $\left(x_{n}\right)_{n}$ is decreasing with limit 0 . Show also that $\frac{x_{n+1}}{x_{n}} \longrightarrow \frac{1}{2}$.
78. If $a_{n+2}=\frac{a_{n}+a_{n+1}}{2}$ for all $n \geq 1$, show that $a_{n} \longrightarrow \frac{a_{1}+2 a_{2}}{3}$.
79. If $\left|a_{n}\right|<2$ and $\left|a_{n+1}-a_{n}\right| \leq \frac{1}{8}\left|a_{n+1}^{2}-a_{n}^{2}\right|$ for all $n \geq 1$, show that $\left(a_{n}\right)_{n}$ converges.
80. Let $F: \mathbb{N} \longrightarrow \mathbb{R}^{d}$ be a sequence with $F=\left(f_{1}, f_{2}, \cdots, f_{d}\right)$. Show that $F(n) \longrightarrow P \in \mathbb{R}^{d}$ iff $f_{i}(n) \longrightarrow d_{i}$ as $n \longrightarrow \infty$ for each $i=1,2, \cdots, d$.
81. Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at one point, show that f is continuous and that there is some $a \in \mathbb{R}$ with $f(x)=a x$ for all $x \in \mathbb{R}$.
82. Let $a, b \in \mathbb{R}$ with $a<b$ and $f:[a, b] \longrightarrow \mathbb{R}$. We say that f is convex if for all $x, y \in[a, b]$ and $\alpha \in[0,1]$ we have $f((1-\alpha) x+\alpha y) \leq$ $(1-\alpha) f(x)+\alpha f(y)$. Show that a convex function $f:[a, b] \longrightarrow \mathbb{R}$ is continuous.
83. Let $S \subseteq \mathbb{R}^{n}$ be open and connected. Let T be a connected component of $\mathbb{R}^{n}-S$. Show that $\mathbb{R}^{n}-T$ is connected.
84. Let M be a metric space, $x \in M$ and $U(x)$ the connected component of M containing x. Show that $U(x) \in C L(M)$.
85. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be linear. Show that T is uniformly continuous.
86. Let E, F be normed vector spaces, $T: E \longrightarrow F$ linear. Show that TFAE:
(a) T is continuous at one point,
(b) T is uniformly continuous,
(c) T maps bounded sets to bounded sets.
87. Let $|\cdot|$ be a norm on \mathbb{R}^{n}. Show that there are $m, M \in(0, \infty)$ such that $m|X| \leq\|X\| \leq M|X|$ for all $x \in \mathbb{R}^{n}$. ($\|X\|$ denotes the euclidean norm of $X \in \mathbb{R}^{n}$.) Hence all norms on \mathbb{R}^{n} are equivalent.
88. Let K be a compact metric space, $f: K \longrightarrow K$ be a function with

$$
d(f(x), f(y))<d(x, y)
$$

for all $x, y \in K$. Does f necessarily have a fixed point?
89. Let K be a compact metric space. We now know that every continuous complex function on K is bounded. Hence, if $C(K)$ denotes the set of continuous complex functions on K, it is a vector subspace of $\ell^{\infty}(K)$. Is $C(K)$ closed in $\ell^{\infty}(K)$.
90. Suppose M is a locally compact separable metric space. Show that there exists a sequence $\left(K_{n}\right)_{n}$ of compact subsets such that
(a) $K_{n} \subset K_{n+1}^{\circ}$ for all $n \in \mathbb{N}$,
(b) $M=\cup_{n} K_{n}$, and that
(c) every compact subset of M is contained in at least one of the K_{n} 's.
91. Let E, F be metric spaces, $f: E \longrightarrow F$ a function. The graph of f is defined to be the set $\{(x, f(x)): x \in E\}$. If f is continuous, show that the graph of f is closed. Suppose that E is compact. Show that f is continuous iff the graph of f is compact.
92. Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a function with the intermediate value property: If $f(a)<c<f(b)$, there is some x between a and b such that $f(x)=c$. Suppose also that $f^{-1}(\{r\})$ is closed for every $r \in \mathbb{Q}$. Show that f is continuous.
93. Ssuppose that $f:(a, b) \longrightarrow \mathbb{R}$ is continuous and that

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}
$$

for all $x, y \in(a, b)$. Show that f is convex.
94. Find the limits if they exist:
(a)

$$
\lim _{(x, y) \longrightarrow(0,0)} \frac{x^{4}+y^{4}}{x^{2}+y^{2}}
$$

(b)

$$
\lim _{(x, y) \longrightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}
$$

(c)

$$
\lim _{\|X\| \longrightarrow \infty} \frac{\left\|X-X_{1}\right\|}{\left\|X-X_{2}\right\|}
$$

where X_{1}, X_{2} are given elements of \mathbb{R}^{n}.
95. Show that $\lim _{X \rightarrow P} f(X)=+\infty$ iff $\lim _{X \longrightarrow P} \frac{1}{f(X)}=0$ and $f(X)>0$ for every X in some punctured neighborhood of P.
96. Let $C \subseteq \mathbb{R}^{n}$ be a closed, convex non-empty subset, $P \in \mathbb{R}^{n}-C$. Show that there is exactly one point $X \in C$ such that $d(P, C)=d(P, X)$.
97. Suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is continuous, that $f(X)>0$ for all $X \neq 0$ and that $f(c X)-c f(X)$ for all $X \in \mathbb{R}^{n}$ and $c>0$. Show that there are $a, b \in(0, \infty)$ such that $a\|X\| \leq f(X) \leq b\|X\|$ for all $X \in \mathbb{R}^{n}$.
98. If A, B are two non-empty compact subsets of \mathbb{R}^{n}, define $d(A, B)$ to be the smallest number a with the following property: For every $X \in A$ there is some $Y \in B$ such that $\|X-Y\| \leq a$ and for every $Y \in B$ there exists some $X \in A$ such that $\|X-Y\| \leq a$. Show that d is a metric on the space $\mathcal{K}\left(\mathbb{R}^{n}\right)$ of all non-empty compact subsets of \mathbb{R}^{n}. Is this space complete? If $\mathcal{K} \mathcal{C}\left(\mathbb{R}^{n}\right)$ denotes the set of elements of $\mathcal{K}\left(\mathbb{R}^{n}\right)$ which are also convex, is it closed?
99. Suppose that $K \subset \mathbb{R}^{n}$ is compact, convex, symmetric about 0 and that K contains a euclidean neighborhood of 0 . Let $|0|=0$ and define, for $X \neq 0$,

$$
|X|:=\frac{1}{\max \{t: t X \in K\}} .
$$

Show that $X \mapsto|X|$ is a norm on \mathbb{R}^{n}.
100. Let M be a metric space, $x \in M$, and $f, g: M \longrightarrow \mathbb{C}$ two functions. If f is continuous at x, and $\lim _{y \rightarrow x} g(y)=0$, show that

$$
\lim _{y \longrightarrow x} f(y) g(y)=0 .
$$

101. Suppose f is differentiable in (a, b).
(a) If $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$, show that f is monotonically increasing.
(b) If $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$, show that f is monotonically decreasing.
(c) If $f^{\prime}(x)=0$ for all $x \in(a, b)$, show that f is constant.
102. Let $f:(a, b) \longrightarrow \mathbb{C}$ be a function, $x \in(a, b)$. We can define the derivative of f at x in the same way as the real-valued case. We could also write $f=u+i v$ where u, v are real valued functions. Show that then f is differentiable iff both u and v are differentiable and in this case we have

$$
f^{\prime}(x)=u^{\prime}(x)+i v^{\prime}(x) .
$$

103. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Show that f is constant.
104. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function withe a bounded derivative. Let $\varepsilon>0$ and define $f(x)=x+\varepsilon g(x)$ for all $x \in \mathbb{R}$. Prove that f is a one-to-one function if ε is small enough.
105. If

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n}}{n+1}=0
$$

where $C_{0}, C_{1}, \cdots, C-n$ are real constants, prove that the equation

$$
C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}=0
$$

has at least one root between 0 and 1 .
106. Suppose $f:(0, \infty) \longrightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x) \longrightarrow 0$ as $x \longrightarrow \infty$. Show that $f(x+1)-f(x) \longrightarrow 0$ as $x \longrightarrow \infty$.
107. Suppose
(a) f is continuous for $x \geq 0$,
(b) $f^{\prime}(x)$ exists for $x>0$,
(c) $f(0)=0$,
(d) f^{\prime} is monotonically incerasing.

If $g(x)=\frac{f(x)}{x}$ for all $x>0$, show that g is monotonically increasing.
108. Suppose $f^{\prime}(x)$ and $g^{\prime}(x)$ exist, $g^{\prime}(x) \neq 0, f(x)=g(x)=0$. Prove that

$$
\lim _{t \rightarrow x} \frac{f(t)}{g(t)}=\frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Show also that this holds for complex functions as well.
109. Let f be a continuous real function. Suppose that $f^{\prime}(x)$ exists for all $x \neq 0$ and that $f^{\prime}(x) \longrightarrow 3$ as $x \longrightarrow 0$. Does $f^{\prime}(0)$ exist?
110. Suppose f and g are complex differentiable functions on $(0,1)$,

$$
f(x) \longrightarrow 0, g(x) \longrightarrow 0, f^{\prime}(x) \longrightarrow A \text { and } g^{\prime}(x) \longrightarrow B
$$

as $x \longrightarrow 0 .(B \neq 0)$ Show that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{A}{B}
$$

111. Suppose f is defined in a neighborhood of x and suppose that $f^{\prime \prime}(x)$ exists. Show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x) .
$$

Show that the limit may exist although even if $f^{\prime \prime}(x)$ does not.
112. If $f(x)=|x|^{3}$, compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for all real x and show that $f^{\prime \prime \prime}(0)$ does not exist.
113. Suppose a and c are real numbers, $c>0$, and f is defined on $[-1,1]$ by

$$
f(x)= \begin{cases}x^{a} \sin \left(x^{-c}\right) & (\text { if } x \neq 0) \\ 0 & (\text { if } x=0)\end{cases}
$$

Prove the following statements:
(a) f is continuous iff $a>0$.
(b) $f^{\prime}(0)$ exists iff $a>1$.
(c) f^{\prime} is bounded iff $a>1+c$.
(d) $f^{\prime \prime}(0)$ exists iff $a>2+c$.
(e) $f^{\prime \prime}$ is bounded iff $a \leq 2+2 c$.
(f) $f^{\prime \prime}$ is continuous iff $a>2+2 c$.
114. Suppose $a \in \mathbb{R}, f$ is a twice-differentiable function on (a, ∞), and M_{0}, M_{1}, M_{2} are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively, on (a, ∞). Prove that

$$
M_{1}^{2} \leq 4 M_{0} M_{2} .
$$

115. Suppose f is a real, twice-differentiable function on $[-1,1]$, such that

$$
f(-1)=0, \quad f(0)=0, \quad f(1)=1, \quad f^{\prime}(0)=0 .
$$

Prove that $f^{\prime \prime \prime}(x) \geq 3$ for some $x \in(-1,1)$.
116. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a function.
(a) If f is differentiable and $f(t) \neq 1$ for all $t \in \mathbb{R}$, show that f can have at most one fixed point.
(b) Show that the function $f(t)=t+\left(1+e^{t}\right)^{-1}$ has no fixed point, although $0<f^{\prime}(t)<1$ for all real t.
(c) If there is a constant $A<1$ such that $\left|f^{\prime}(t)\right| \leq A$ for all real t, show that f must have a fixed point.
117. Suppose f is differentiable on $[a, b], f(a)=0$, and there is a real number A such that $\left|f^{\prime}(x)\right| \leq A|f(x)|$ for all $x \in[a, b]$. Prove that $f(x)=0$ for all $x \in[a, b]$.
118. Let $f:(a, b) \longrightarrow \mathbb{R}$ be differentiable with a bounded derivative. Show that f is uniformly continuous.
119. Suppose $f:(a, \infty) \longrightarrow \mathbb{R}$ is differentiable $(a \in \mathbb{R})$, and $\lim _{x \rightarrow \infty} f^{\prime}(x)=$ ∞. Show that f is not uniformly continuous.
120. Suppose $f:(a, \infty) \longrightarrow \mathbb{R}$ is differentiable. If $\lim _{x \rightarrow \infty} f^{\prime}(x)=g$, show that $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=g$ as well.
121. Suppose $f:(0,1]$ is differentiable with $\left|f^{\prime}(x)\right|<1$ for all $x \in(0,1]$. Define $a_{n}=f\left(\frac{1}{n}\right)$ for all $n \in \mathbb{N}$. Show that $\left(a_{n}\right)_{n}$ converges.
122. Suppose $f:(a, b) \longrightarrow \mathbb{R}$ is differentiable and $c \in(a, b)$. Assume that $\lim _{x \rightarrow c} f^{\prime}(x)$ exists. Show that $\lim _{x \rightarrow c} f^{\prime}(x)=f^{\prime}(c)$.
123. Suppose $f:(a, b) \longrightarrow \mathbb{R}$ is continuous and is differentiable except possibly at $c \in(a, b)$. If $f^{\prime}(x) \longrightarrow A$ as $x \longrightarrow c$, show that f is also differentiable at c and $f^{\prime}(c)=A$.
124. For each $n \in \mathbb{N}$, let $g_{n}:[0,1] \longrightarrow \mathbb{R}$ be an integrable function. Define $G_{n}(x)=\int_{0}^{x} g_{n}(t) d t$ for all $n \in \mathbb{N}$ and $x \in[0,1]$. Show that $\left(G_{n}\right)_{n}$ has a uniformly convergent subsequence.
125. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{-1 / x} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

(a) Show that f is smooth.
(b) Is f analytic?
(c) Define

$$
g(x)=e^{2} f(1-x) f(x+1) .
$$

Show that g is smooth, identitaclly zero outside $(-1,1)$, positive on $(-1,1)$, and takes the value 1 at $x-0$.
(d) Show that $g(x)=e^{-2 x^{2} /\left(x^{2}-1\right)}$ for all $|x|<1$.
126. Let $f_{n}: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable functions for each $n \in \mathbb{N}$ with $f_{n}(0)=0$ and $\left|f_{n}^{\prime}(x)\right| \leq 2$ for all n, x. If $f_{n} \longrightarrow g$ pointwise, show that g is continuous.
127. Suppose $\left(f_{n}\right)_{n}$ is a sequence of differentiable real functions on a compact interval $[a, b]$ such that $\left|f_{n}(x)\right| \leq M$ and $\left|f_{n}^{\prime}(x)\right| \leq M$ for all n, x. ($M \in \mathbb{R}$ is fixed.) Show that then $\left(f_{n}\right)_{n}$ has a uniformly convergent subsequence.
128. Let $\left(f_{n}\right)$ be a sequence of functions defined on an open interval I satisfying $\left|f_{n}(x)\right| \leq F(x)$ and $\left|f_{n}^{\prime}(x)\right| \leq G(x)$ for all n, x, where $F, G: I \longrightarrow \mathbb{R}$ are constinuous functions. Prove that $\left(f_{n}\right)$ has a subsequence which converges uniformly on every compact subset of I.
129. Prove that the set of polynomials of degree $\leq N$ with coefficients in $[-1,1]$ is uniformly bounded and uniformly equicontinuous on any compact interval.
130. Prove that the family of polynomials $P(x)$ of degree $\leq N$ satisfying $|P(x)| \leq 1$ on $[0,1]$ is uniformly equicontinuous on $[0,1]$.
131. If $\left(f_{n}\right)_{n}$ is a uniformly equicontinuous sequence of functions on a compact interval and $f_{n} \longrightarrow f$ pointwise, prove that $f_{n} \longrightarrow f$ uniformly.
132. Let F be finite set of continuous functions on a compact interval. Show that $\mathcal{F}:=\left\{\sum_{f \in F} a_{f} f:\left|a_{f}\right| \leq 1\right.$ for all $\left.f \in F\right\}$ is uniformly bounded and uniformly equicontinuous.
133. Let $\left(f_{n}\right)_{n}$ be a sequence of uniformly bounded uniformly equicontinuous functions on a bounded open interval (a, b). Show that the functions can be extended to the compact interval $[a, b]$ so that they are still uniformly bounded and uniformly equicontinuous.
134. Give an example of a sequence of functions that is unformly equicontinuous but not uniformly bounded.
135. Give an example of a sequence of real functions on \mathbb{R} that is uniformly bounded and uniformly equicontinuous but doesn't have any uniformly convergent subsequence.
136. Prove that the sequence $f_{n}(x)=\sin n x$ is not uniformly equicontinuous on any non-trivial compact interval.
137. Suppose that $\left(f_{n}\right)_{n}$ is a sequence of functions on a compact interval that is pointwise bounded and pointwise equicontinuous. Show that it has a subsequence which converges pointwise.
138. Suppose that $f:[0,1] \longrightarrow \mathbb{R}$ is continuous. If f satsifies

$$
\int_{0}^{x} f(t) d t=x \sin x+\int_{0}^{x} \frac{f(t)}{1+t^{2}} d t
$$

find f.
139. Find

$$
\lim _{x \rightarrow 3} \frac{x}{x-3} \int_{0}^{x} \frac{\sin t}{t} d t
$$

140. Find tha maximum value of the function $x+y$ on the unit circle $\{(x, y)$: $\left.x^{2}+y^{2}=1\right\}$.
141. Find the largest area of a rectangle inscribed in the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

(Here $a, b>0$)
142. Let $A=\left\{(x, y): y^{2}=2 x\right\}$. If $p=(1,4) \in \mathbb{R}^{2}$, find $d(p, A)$.
143. Suppose $f:[a, b] \longrightarrow \mathbb{R}$ is continuous. Show that

$$
\lim _{p \rightarrow \infty}\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}=\|f\|_{\infty}
$$

144. Show that, for $m, n \in \mathbb{N}$, we have

$$
\int_{-\pi}^{\pi} \sin m x \cos n x d x=0 .
$$

145. Let $m, n \in \mathbb{N}$ with $m \neq n$. Show that

$$
\int_{-\pi}^{\pi} \sin m x \sin n x d x=\int_{-\pi}^{\pi} \cos m x \cos n x d x=0 .
$$

146. Suppose that $f:[0,1] \longrightarrow \mathbb{R}$ is continuous. Prove that

$$
\int_{0}^{\pi} x f(\sin x) d x=\frac{1}{2} \pi \int_{0}^{\pi} f(\sin x) d x
$$

147. Suppose $a, b \in \mathbb{R}$ with $|a| \neq|b|$. Prove that

$$
\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} \sin a t \cos b t d t=0 .
$$

148. Let f be a continuous function on $[a, b]$. Suppose there exists a constant K such that

$$
|f(x)| \leq K \int_{a}^{x}|f(t)| d t
$$

for all $x \in[a, b]$. Show that $f(x)=0$ for all $x \in[a, b]$.
149. Suppose $f:[a, b] \longrightarrow \mathbb{R}$ is twice continuously differentiable. Show that

$$
\int_{a}^{b} x f^{\prime \prime}(x) d x=b f^{\prime}(b)-f(b)+f(a)-a f^{\prime}(a)
$$

150. Let $m, n \in \mathbb{N}$. Show that

$$
\int_{0}^{1} x^{m}(1-x)^{n} d x=\int_{0}^{1} x^{n}(1-x)^{m} d x
$$

151. For $f, g \in C([a, b])$ define $d_{1}(f, g)=\int_{a}^{b}|f(x)-g(x)| d x$. Show that d_{1} is a metric on $C([a, b])$.
152. Prove that

$$
\lim _{h \rightarrow 0} \int_{-a}^{a} \frac{h}{h^{2}+x^{2}} d x=\pi
$$

153. Prove that, if $f:[-1,1] \longrightarrow \mathbb{R}$ is continuous, then

$$
\lim _{h \rightarrow 0} \int_{-1}^{1} \frac{h}{h^{2}+x^{2}} f(x) d x=\pi f(0)
$$

