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1. Let (M,d) be a metric space. For x, y ∈M define

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

Show that ρ is also a metric on M . Show that these two metrices are
equivalent (i.e. they generate the same open sets).

2. Show that a compact space is bounded.

3. Let A be a closed subset of M . For x ∈M define

f(x) = d(x,A) = inf{d(x, y) : y ∈ A}.

Show that d(x, y) ≥ |f(x)− f(y)| for all x, y ∈ M . Show also that
f(x) = 0 iff x ∈ A.

4. Suppose that every sequence in M has a convergent subsequence. If
ε > 0 is given show that any subset A with the property that d(x, y) ≥ ε
for all x, y ∈ A is finite.

5. Suppose that K is a compact subset of M and B is a closed subset of
M with K ∩ B = ∅. Define d(K,M) to be inf{d(k, b) : k ∈ K, b ∈ B}.
Show that d(K,M) > 0. Show that one can find metric spaces where
A,B are disjoint non-empty closed subsets of M with d(A,B) = 0.

6. Suppose that (xn)n∈N is a sequence in M converging to some x ∈ M .
Show that {xn : n ∈ N} ∪ {x} is compact.

7. Show that, if K ⊂ Rn is closed and bounded, every sequence in K has
a subsequence which converges to some point of K.

8. Let K ⊂ Rn. Show that K is bounded iff it is totally bounded.
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9. Show that in a general metric space a bounded set is not necessarily
totally bounded.

10. Let X and Y be metric spaces. Put Z = X × Y and

d((x, y), (z, t)) = dX(x, z) + dY (y, t)

for all (x, y), (z, t) ∈ Z. Show that Z is a metric space with this metric.
Show that if U ⊂ X and V ⊂ Y then U×V is open in Z iff U ∈ OP (X)
and V ∈ OP (Y ).

11. Let X be metric space and ∆ := {(x, x) : x ∈ X}. Show that ∆ is
closed in X ×X.

12. Let E be any set which is not empty. X := `∞(E) is defined to be the
space of all bounded complex functions on E. For f, g ∈ X we define

d(f, g) = sup
p∈E
|f(p)− g(p)| .

Show that X is a complete metric space.

13. Let X be real or complex vector space. By a norm on X we mean
a function ‖·‖ : X −→ R with the following properties: (a) ‖x‖ ≥ 0
for all x ∈ X; (b) ‖x‖ = 0 iff x = 0; (c) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all
x, y ∈ X; (d) ‖ax‖ = |a| ‖x‖ for all numbers a and x ∈ X. Show that if
X is a normed vector space, it becomes in a natural way a meric space
by putting d(x, y) = ‖x− y‖.

14. For X ∈ Rn define ‖X‖1 =
∑

i |xi| and ‖X‖2 :=
√∑

i |xi|
2 and

‖X‖∞ = supi |xi|. All these norms are equivalent in the sense that
they generate the same open sets.

15. Let V be a vector space, ‖‖1 and ‖‖2 two norms on V . Show that these
two norms are equivalent iff there exist M,N > 0 such that

M ‖x‖1 ≤ ‖x‖2 ≤ N ‖x‖2

for all x ∈ V .

16. Let X and Y be metric spaces, f : X −→ Y . We say that f pre-
serves convergence if whenever xn −→ x in X, (f(xn))n also converges
and f(xn) −→ f(x). If K is a compact subset of X and f preserves
convergence, show that f(K) must be compact.
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17. Let U, V be two dense open subsets of a metric space X. Is U ∩ V
dense in X?

18. Let X, Y be metric spaces. Show that X × Y is compact iff X and Y
are compact.

19. Let Xn be a metric space for every n ∈ N. Let X :=
∏∞

i=1Xn be the
space of all sequences x = (xn)n in ∪n∈NXn such that xn ∈ Xn for each
n ∈ N. On X define

d(x, y) :=
∞∑
n=1

1

2n
dn(xn, yn)

(1 + dn(xn, yn))

for each x, y ∈ X. Show that X is a metric space. Show also that X is
compact iff so is each Xn.

20. Show that a subspace of a separable metric space is separable.

21. Let M be a separable metric space. Show that if (Uα)α∈I is a family
of pairwise disjoint non-empty open subsets of M , then I should be
countable.

22. Show that if S is infinite, the space `∞(S) is not separable.

23. If M is a connected metric space and if M contains at least two points,
show that M is uncountable.

24. Let (Xn)n∈N be a sequence in Rd, X ∈ Rd. Show that Xn −→ X iff,
for each i ∈ [1, n] we have Xn(i) −→ X(i).

25. Let M be a metric space, K a non-empty compact subset of M , x ∈
M −K. Show that there exists a y ∈ K such that d(x,K) = d(x, y).

26. Let M be a metric space, K a subset of M . Define

diam(K) := sup{d(x, y) : x, y ∈ K}.

Show that K is bounded iff diam(K) is finite.

27. Show that, if K is compact, then diam(K) is finite and that there are
two points x, y ∈ K such that d(x, y) = diam(K).

28. Let M be a complete metric space, (En)n∈N a sequence of closed sets
with the following conditions:

(a) En+1 ⊆ En for each n ∈ N,
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(b) limn−→∞ diam(En) = 0.

Show that ∩n∈NEn consists of exactly one point.

29. If A,B ⊂ Rd, we define A+B to be the set of all X + Y where X ∈ A
and Y ∈ B. If A and B are closed balls in Rd, show that A+B is also
a closed ball.

30. Show that if A and B are both compact, then A+B is also compact.

31. Show that if A is compact, B is closed, then A+B is closed.

32. If A and B are both closed, give an example to show that A+B is not
necessarily closed.

33. Let M be a metric space, A ⊂ M which is not empty. Then, the
function f : M −→ R given by f(x) = d(x,A) (for all x ∈ M) is
continuous.

34. Let M be a metric space, A,B two non-empty disjoint closed subsets.
Show that there exists a continuous function f : M −→ [0, 1] such that
f(x) = 1 for all x ∈ A and f(x) = 0 for all x ∈ B.

35. Let M be metric space, A,B two non-empty disjoint closed subsets of
M . Show that there exist U, V ∈ OP (M) such that A ⊂ U , B ⊂ V
and U ∩ V = ∅.

36. A metric space M is said to be locally compact is for every x ∈M there
is a compact set K such that x ∈ K◦. For example, Rn is a locally
compact metric space. If M is a closed subset of Rn, show that it is,
as a subspace, a locally compact metric space. What can you say if M
is open? What if it is the intersection of an open and a closed subset
of Rn? (Such subsets are said to be locally closed.)

37. Let M be a locally compact metric space, K a non-empty compact
subset, U ∈ OP (M) with K ⊂ U . Show that there is a O ∈ OP (M)
such that O is compact with K ⊂ O ⊂ O ⊂ U .

38. Let X ∈ RN and ε > 0. Show that S(X, ε) is path-connected, hence
connected.

39. Let M be a compact metric space, N another metric space, f : M −→
N a continuous bijection. Show that f is a homeomorphism. I.e., f−1

is also continuous.

4



40. Let K be a compact metric space, f : K −→ K an isometry. This
means that d(f(x), f(y)) = d(x, y) for all x, y ∈ M . Show that f is a
bijection.

41. Define f : R −→ R be defined as follows: If x ∈ R−Q, then f(x) = 0.
If x = m

n
(in reduced form), then f(m

n
) = 1

n
. Find the points where f

is continuous.

42. Let M be a metric space, D ⊂ M dense. Let f : D −→ R be a func-
tion. Show that if f is uniformly continuous then it has a continuous
extension to all of M . (This means that there exists some g : M −→ R
continuous such that g(x) = f(x) for all x ∈ D.)

43. Let f : (0, 1) −→ R be a function. Show that f has a continuous
extension to [0, 1] iff it is uniformly continuous.

44. Let K be a compact metric space, (Uα)α∈I an open cover of K. Show
that there exists some ε > 0 such that any open ball of radius ε is
contained in some Uα.

45. Let M,N be metric spaces, f : M −→ N be uniformly continuous.
If A is a totally bounded subset of M , show that f(A) is also totally
bounded.

46. Let M,N be metric spaces, f : M −→ N a function. Suppose that the
restriction of f to any compact subset of M is continuous. Show that
f is continuous.

47. If A is a locally compact subspace of a metric space M , show that A
is locally closed.

48. Let M be a metric space, A,B be two locally compact subspaces of M .
Show that A ∩B is also locally compact.

49. In R give an example of two locally compact subspaces whose union
is not locally compact. Give also an example of a locally compact
ssubspace whose complement is not locally compact.

50. Give an example of a locally compact metric space which is not com-
plete.

51. Let M be a proper metric space. Show that M is complete. If A is a
relatively compact subset, show that C(A, 1

2
) is compact.

52. If A ⊆M is connected and A ⊆ B ⊆ A, show that B is also connected.
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53. Suppose A1, A2, · · · , An are connected subset of a metric space M with
Ai ∩ Ai+1 6= ∅ for all 1 ≤ 1 < n. Show that ∪ni=1Ai is connected.

54. If A,B are connected subsets of M and A∩B 6= ∅, show that A∪B is
connected.

55. Let M be a metric space, A,B ∈ CL(M)− {∅}, A ∪ B and A ∩ B be
connected. Show that both A and B are connected.

56. Let M be a complete metric space, f : M −→ M a function. Suppose
that there is some c ∈ (0, 1) such that d(f(x), f(y)) ≤ cd(x, y) for all
x, y ∈M . Show that there is a unique x ∈M such that f(x) = x.

57. Let f : R −→ R be the function defined by

f(x) = x− π

2
− arctanx

for all x ∈ R. Show that |f(x)− f(y)| < |x− y| for all x, y ∈ R. Show
also that f does not have any fixed point. Deduce that c < 1 in the
previous exercise is essential.

58. Assume E ⊆ Rn. A point X ∈ Rn is said to be a condensation point of
S if for every r > 0 B(X, r) ∩ E is uncountable. If E is uncountable,
show that there is some X ∈ S which is a condensation point of E.

59. Let S, T ⊆ Rn. Show that S ∩ T ⊆ S ∩ T and that S ∩ T ⊆ S ∩ T .
(This is true for general metric spaces as well)

60. Prove that every F ∈ CL(R) is the intersection of a sequence of open
sets.

61. Suppose that S, T ⊆ Rn. Show that S◦ ∩ T ◦ = (S ∩ T )◦ and that
S◦ ∪ T ◦ ⊆ (S ∪ T )◦. (This is true for general metric spaces as well)

62. Let S ⊆ Rn. We say that a point X ∈ Rn is an accumulation point
of S if evry r-ball around X contains some element of S different from
X itself. Let F be a family of subsets of Rn. Let S = ∪A∈FA and
T = ∩A∈FA. Prove or disprove:

(a) If X is an accumulation point of T , then it is an accumulation
point of each A ∈ F .

(b) If X is an accumulation point of S, then it is an accumulation
point of at least one A ∈ F .
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63. Let S be the set of rational numbers in (0, 1). Can one write S as the
intersection of a countable family of open subsets of R?

64. Let S be a subset of a metric space M , A point X ∈ S is said to be
an isolated point of S if B(X, r) ∩ S = {X} for some r > 0. Now let
S ⊆ Rn. Show that the set of isolated points of S is at most countable.

65. Let B : {B((x, x), x) : x ∈ (0,∞), x ∈ Q}. Show that B is an open
cover of (0,∞)× (0,∞) ⊆ R2.

66. Let U : {( 1
n
, 2
n
) : n ∈ N, n ≥ 2} is an open cover of (0, 1) which does

not have any finite subcover.

67. Suppose S ⊆ Rn has the following property: For every X ∈ S there
is some r > 0 such that S ∩ B(X, r) is countable. Prove that S is
countable?

68. Let S ⊆ Rn be an uncountable subset. Let T be the set of condensation
points of S. Prove that

(a) S − T is at most countable,

(b) T is closed,

(c) S ∩ T is uncountable, and

(d) T does not have any isolated points.

69. A set S ⊂ Rn is said to be perfect if every point of S is an accumulation
point of S. (S ⊆ Rn is perfect iff it is a closed set whithout isolated
points.) Prove that if F ⊆ Rn is uncountable and closed, then F =
A ∪B, where A is perfect and B is countable.

70. Let M be a metric space, A, S ⊆ M . If A ⊆ S ⊆ A, we say that A is
dense in S. Now let A, S, T ⊆ M . If A is dense in S, S is dense in T ,
show that A is dense in T .

71. Suppose M is a metric space. If A ⊆M and B ∈ OP (M) are dense in
M , show that A ∩B is also dense in M .

72. Let M be metric space. Assume K ⊆ L ⊆M . Show that K is compact
in L iff it is compact in M .

73. Let a, b ∈ Qc with a < b, S = Q ∩ (a, b). Show that S is cloed and
bounded in Q and that it is not compact.

7



74. Let M be a metric space, A,B ⊆ M , F be a family of subsetes of M .
The set ∂(A) = A− A◦ is called the boundary of A. Prove that

(a) A◦ = M − (M − A),

(b) (M − A)◦ = M − A,

(c) (A◦)◦ = A◦,

(d) (∩ni=1Ai)
◦ = ∩ni=1A

◦
i ,

(e) (∩A∈FA)◦ ⊆ ∩A∈FA◦, and that the inclusion can be proper,

(f) (∪A∈FA)◦ ⊆ ∪A∈FA◦, and that the inclusion can be proper,

(g) (∂(A))◦ = ∅ if A ∈ OP (M) or A ∈ CL(M).

(h) If A is closed and A◦ = B◦ = ∅, then (A ∪B)◦ = ∅,
(i) If A ∩B = ∅, then ∂(A ∪B) = ∂(A) ∪ ∂(B).

75. Let M be metric space. If xn −→ x and yn −→ y in M , show that
d(xnyn) −→ d(x, y).

76. A sequence (xn)n in R satisfies 7xn+1 = x3
n + 6 for n ∈ N. If x1 = 1

2
,

show that (xn)n converges and find its limit. What if x1 = 5
2
?

77. If x1 ∈ (0, 1) and n+1 = 1 −
√

1− xn for all n ≥ 1, show that (xn)n is
decreasing with limit 0. Show also that xn+1

xn
−→ 1

2
.

78. If an+2 = an+an+1

2
for all n ≥ 1, show that an −→ a1+2a2

3
.

79. If |an| < 2 and |an+1 − an| ≤ 1
8

∣∣a2
n+1 − a2

n

∣∣ for all n ≥ 1, show that
(an)n converges.

80. Let F : N −→ Rd be a sequence with F = (f1, f2, · · · , fd). Show that
F (n) −→ P ∈ Rd iff fi(n) −→ di as n −→∞ for each i = 1, 2, · · · , d.

81. Suppose that f : R −→ R satisfies f(x + y) = f(x) + f(y) for all
x, y ∈ R. If f is continuous at one point, show that f is continuous
and that there is some a ∈ R with f(x) = ax for all x ∈ R.

82. Let a, b ∈ R with a < b and f : [a, b] −→ R. We say that f is
convex if for all x, y ∈ [a, b] and α ∈ [0, 1] we have f((1− α)x+ αy) ≤
(1 − α)f(x) + αf(y). Show that a convex function f : [a, b] −→ R is
continuous.

83. Let S ⊆ Rn be open and connected. Let T be a connected component
of Rn − S. Show that Rn − T is connected.
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84. Let M be a metric space, x ∈ M and U(x) the connected component
of M containing x. Show that U(x) ∈ CL(M).

85. Let T : Rn −→ Rm be linear. Show that T is uniformly continuous.

86. Let E,F be normed vector spaces, T : E −→ F linear. Show that
TFAE:

(a) T is continuous at one point,

(b) T is uniformly continuous,

(c) T maps bounded sets to bounded sets.

87. Let |·| be a norm on Rn. Show that there are m,M ∈ (0,∞) such that
m |X| ≤ ‖X‖ ≤ M |X| for all x ∈ Rn. (‖X‖ denotes the euclidean
norm of X ∈ Rn.) Hence all norms on Rn are equivalent.

88. Let K be a compact metric space, f : K −→ K be a function with

d(f(x), f(y)) < d(x, y)

for all x, y ∈ K. Does f necessarily have a fixed point?

89. Let K be a compact metric space. We now know that every continuous
complex function on K is bounded. Hence, if C(K) denotes the set of
continuous complex functions on K, it is a vector subspace of `∞(K).
Is C(K) closed in `∞(K).

90. Suppose M is a locally compact separable metric space. Show that
there exists a sequence (Kn)n of compact subsets such that

(a) Kn ⊂ K◦n+1 for all n ∈ N,

(b) M = ∪nKn, and that

(c) every compact subset of M is contained in at least one of the Kn’s.

91. Let E,F be metric spaces, f : E −→ F a function. The graph of f is
defined to be the set {(x, f(x)) : x ∈ E}. If f is continuous, show that
the graph of f is closed. Suppose that E is compact. Show that f is
continuous iff the graph of f is compact.

92. Suppose that f : R −→ R is a function with the intermediate value
property: If f(a) < c < f(b), there is some x between a and b such
that f(x) = c. Suppose also that f−1({r}) is closed for every r ∈ Q.
Show that f is continuous.
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93. Ssuppose that f : (a, b) −→ R is continuous and that

f

(
x+ y

2

)
≤ f(x) + f(y)

2

for all x, y ∈ (a, b). Show that f is convex.

94. Find the limits if they exist:

(a)

lim
(x,y)−→(0,0)

x4 + y4

x2 + y2

(b)

lim
(x,y)−→(0,0)

xy2

x2 + y4

(c)

lim
‖X‖−→∞

‖X −X1‖
‖X −X2‖

where X1, X2 are given elements of Rn.

95. Show that lim
X−→P

f(X) = +∞ iff lim
X−→P

1

f(X)
= 0 and f(X) > 0 for

every X in some punctured neighborhood of P .

96. Let C ⊆ Rn be a closed, convex non-empty subset, P ∈ Rn −C. Show
that there is exactly one point X ∈ C such that d(P,C) = d(P,X).

97. Suppose that f : Rn −→ R is continuous, that f(X) > 0 for all X 6= 0
and that f(cX) − cf(X) for all X ∈ Rn and c > 0. Show that there
are a, b ∈ (0,∞) such that a ‖X‖ ≤ f(X) ≤ b ‖X‖ for all X ∈ Rn.

98. If A,B are two non-empty compact subsets of Rn, define d(A,B) to be
the smallest number a with the following property: For every X ∈ A
there is some Y ∈ B such that ‖X − Y ‖ ≤ a and for every Y ∈ B
there exists some X ∈ A such that ‖X − Y ‖ ≤ a. Show that d is a
metric on the space K(Rn) of all non-empty compact subsets of Rn. Is
this space complete? If KC(Rn) denotes the set of elements of K(Rn)
which are also convex, is it closed?

99. Suppose that K ⊂ Rn is compact, convex, symmetric about 0 and that
K contains a euclidean neighborhood of 0. Let |0| = 0 and define, for
X 6= 0,

|X| := 1

max{t : tX ∈ K}
.
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Show that X 7→ |X| is a norm on Rn.

100. Let M be a metric space, x ∈M , and f, g : M −→ C two functions. If
f is continuous at x, and limy−→x g(y) = 0, show that

lim
y−→x

f(y)g(y) = 0.

101. Suppose f is differentiable in (a, b).

(a) If f ′(x) ≥ 0 for all x ∈ (a, b), show that f is monotonically in-
creasing.

(b) If f ′(x) ≤ 0 for all x ∈ (a, b), show that f is monotonically de-
creasing.

(c) If f ′(x) = 0 for all x ∈ (a, b), show that f is constant.

102. Let f : (a, b) −→ C be a function, x ∈ (a, b). We can define the
derivative of f at x in the same way as the real-valued case. We could
also write f = u + iv where u, v are real valued functions. Show that
then f is differentiable iff both u and v are differentiable and in this
case we have

f ′(x) = u′(x) + iv′(x).

103. Let f : R −→ R be a function such that |f(x)− f(y)| ≤ (x − y)2 for
all x, y ∈ R. Show that f is constant.

104. Let g : R −→ R be a differentiable function withe a bounded derivative.
Let ε > 0 and define f(x) = x+ εg(x) for all x ∈ R. Prove that f is a
one-to-one function if ε is small enough.

105. If

C0 +
C1

2
+ · · ·+ Cn

n+ 1
= 0,

where C0, C1, · · · , C − n are real constants, prove that the equation

C0 + C1x+ C2x
2 + · · ·+ Cnx

n = 0

has at least one root between 0 and 1.

106. Suppose f : (0,∞) −→ R is differentiable and f ′(x) −→ 0 as x −→∞.
Show that f(x+ 1)− f(x) −→ 0 as x −→∞.

107. Suppose
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(a) f is continuous for x ≥ 0,

(b) f ′(x) exists for x > 0,

(c) f(0) = 0,

(d) f ′ is monotonically incerasing.

If g(x) = f(x)
x

for all x > 0, show that g is monotonically increasing.

108. Suppose f ′(x) and g′(x) exist, g′(x) 6= 0, f(x) = g(x) = 0. Prove that

lim
t→x

f(t)

g(t)
=
f ′(x)

g′(x)
.

Show also that this holds for complex functions as well.

109. Let f be a continuous real function. Suppose that f ′(x) exists for all
x 6= 0 and that f ′(x) −→ 3 as x −→ 0. Does f ′(0) exist?

110. Suppose f and g are complex differentiable functions on (0, 1),

f(x) −→ 0, g(x) −→ 0, f ′(x) −→ A and g′(x) −→ B

as x −→ 0. (B 6= 0) Show that

lim
x→0

f(x)

g(x)
=
A

B
.

111. Suppose f is defined in a neighborhood of x and suppose that f ′′(x)
exists. Show that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

Show that the limit may exist although even if f ′′(x) does not.

112. If f(x) = |x|3, compute f ′(x) and f ′′(x) for all real x and show that
f ′′′(0) does not exist.

113. Suppose a and c are real numbers, c > 0, and f is defined on [−1, 1] by

f(x) =

{
xa sin(x−c) (if x 6= 0),

0 (if x = 0).

Prove the following statements:
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(a) f is continuous iff a > 0.

(b) f ′(0) exists iff a > 1.

(c) f ′ is bounded iff a > 1 + c.

(d) f ′′(0) exists iff a > 2 + c.

(e) f ′′ is bounded iff a ≤ 2 + 2c.

(f) f ′′ is continuous iff a > 2 + 2c.

114. Suppose a ∈ R, f is a twice-differentiable function on (a,∞), and
M0 , M1, M2 are the least upper bounds of |f(x)|, |f ′(x)|, |f ′′(x)|,
respectively, on (a,∞). Prove that

M2
1 ≤ 4M0M2.

115. Suppose f is a real, twice-differentiable function on [−1, 1], such that

f(−1) = 0, f(0) = 0, f(1) = 1, f ′(0) = 0.

Prove that f ′′′(x) ≥ 3 for some x ∈ (−1, 1).

116. Suppose f : R −→ R is a function.

(a) If f is differentiable and f(t) 6= 1 for all t ∈ R, show that f can
have at most one fixed point.

(b) Show that the function f(t) = t + (1 + et)−1 has no fixed point,
although 0 < f ′(t) < 1 for all real t.

(c) If there is a constant A < 1 such that |f ′(t)| ≤ A for all real t,
show that f must have a fixed point.

117. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number
A such that |f ′(x)| ≤ A |f(x)| for all x ∈ [a, b]. Prove that f(x) = 0
for all x ∈ [a, b].

118. Let f : (a, b) −→ R be differentiable with a bounded derivative. Show
that f is uniformly continuous.

119. Suppose f : (a,∞) −→ Ris differentiable (a ∈ R), and limx→∞ f
′(x) =

∞. Show that f is not uniformly continuous.

120. Suppose f : (a,∞) −→ R is differentiable. If limx→∞ f
′(x) = g, show

that limx→∞
f(x)
x

= g as well.
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121. Suppose f : (0, 1] is differentiable with |f ′(x)| < 1 for all x ∈ (0, 1].
Define an = f( 1

n
) for all n ∈ N. Show that (an)n converges.

122. Suppose f : (a, b) −→ R is differentiable and c ∈ (a, b). Assume that
limx→c f

′(x) exists. Show that limx→c f
′(x) = f ′(c).

123. Suppose f : (a, b) −→ R is continuous and is differentiable except
possibly at c ∈ (a, b). If f ′(x) −→ A as x −→ c, show that f is also
differentiable at c and f ′(c) = A.

124. For each n ∈ N, let gn : [0, 1] −→ R be an integrable function. Define
Gn(x) =

∫ x
0
gn(t)dt for all n ∈ N and x ∈ [0, 1]. Show that (Gn)n has a

uniformly convergent subsequence.

125. Define f : R −→ R by

f(x) =

{
e−1/x if x > 0

0 if x ≤ 0

(a) Show that f is smooth.

(b) Is f analytic?

(c) Define
g(x) = e2f(1− x)f(x+ 1).

Show that g is smooth, identitaclly zero outside (−1, 1), positive
on (−1, 1), and takes the value 1 at x− 0.

(d) Show that g(x) = e−2x2/(x2−1) for all |x| < 1.

126. Let fn : R −→ R be differentiable functions for each n ∈ N with
fn(0) = 0 and |f ′n(x)| ≤ 2 for all n, x. If fn −→ g pointwise, show that
g is continuous.

127. Suppose (fn)n is a sequence of differentiable real functions on a compact
interval [a, b] such that |fn(x)| ≤ M and |f ′n(x)| ≤ M for all n, x.
(M ∈ R is fixed.) Show that then (fn)n has a uniformly convergent
subsequence.

128. Let (fn) be a sequence of functions defined on an open interval I satisfy-
ing |fn(x)| ≤ F (x) and |f ′n(x)| ≤ G(x) for all n, x, where F,G : I −→ R
are constinuous functions. Prove that (fn) has a subsequence which
converges uniformly on every compact subset of I.
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129. Prove that the set of polynomials of degree≤ N with coefficients in
[−1, 1] is uniformly bounded and uniformly equicontinuous on any com-
pact interval.

130. Prove that the family of polynomials P (x) of degree ≤ N satisfying
|P (x)| ≤ 1 on [0, 1] is uniformly equicontinuous on [0, 1].

131. If (fn)n is a uniformly equicontinuous sequence of functions on a com-
pact interval and fn −→ f pointwise, prove that fn −→ f uniformly.

132. Let F be finite set of continuous functions on a compact interval. Show
that F := {

∑
f∈F aff : |af | ≤ 1 for all f ∈ F} is uniformly bounded

and uniformly equicontinuous.

133. Let (fn)n be a sequence of uniformly bounded uniformly equicontinuous
functions on a bounded open interval (a, b). Show that the functions
can be extended to the compact interval [a, b] so that they are still
uniformly bounded and uniformly equicontinuous.

134. Give an example of a sequence of functions that is unformly equicon-
tinuous but not uniformly bounded.

135. Give an example of a sequence of real functions on R that is uniformly
bounded and uniformly equicontinuous but doesn’t have any uniformly
convergent subsequence.

136. Prove that the sequence fn(x) = sinnx is not uniformly equicontinuous
on any non-trivial compact interval.

137. Suppose that (fn)n is a sequence of functions on a compact interval
that is pointwise bounded and pointwise equicontinuous. Show that it
has a subsequence which converges pointwise.

138. Suppose that f : [0, 1] −→ R is continuous. If f satsifies∫ x

0

f(t)dt = x sinx+

∫ x

0

f(t)

1 + t2
dt,

find f .

139. Find

lim
x→3

x

x− 3

∫ x

0

sin t

t
dt.

140. Find tha maximum value of the function x+y on the unit circle {(x, y) :
x2 + y2 = 1}.
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141. Find the largest area of a rectangle inscribed in the ellipse

x2

a2
+
y2

b2
= 1.

(Here a, b > 0)

142. Let A = {(x, y) : y2 = 2x}. If p = (1, 4) ∈ R2, find d(p,A).

143. Suppose f : [a, b] −→ R is continuous. Show that

lim
p−→∞

(∫ b

a

|f(x)|p dx
)1/p

= ‖f‖∞ .

144. Show that, for m,n ∈ N, we have∫ π

−π
sinmx cosnxdx = 0.

145. Let m,n ∈ N with m 6= n. Show that∫ π

−π
sinmx sinnxdx =

∫ π

−π
cosmx cosnxdx = 0.

146. Suppose that f : [0, 1] −→ R is continuous. Prove that∫ π

0

xf(sinx)dx =
1

2
π

∫ π

0

f(sinx)dx.

147. Suppose a, b ∈ R with |a| 6= |b|. Prove that

lim
x→0

1

x

∫ x

0

sin at cos btdt = 0.

148. Let f be a continuous function on [a, b]. Suppose there exists a constant
K such that

|f(x)| ≤ K

∫ x

a

|f(t)| dt

for all x ∈ [a, b]. Show that f(x) = 0 for all x ∈ [a, b].

149. Suppose f : [a, b] −→ R is twice continuously differentiable. Show that∫ b

a

xf ′′(x)dx = bf ′(b)− f(b) + f(a)− af ′(a).
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150. Let m,n ∈ N. Show that∫ 1

0

xm(1− x)ndx =

∫ 1

0

xn(1− x)mdx

.

151. For f, g ∈ C([a, b]) define d1(f, g) =
∫ b
a
|f(x)− g(x)| dx. Show that d1

is a metric on C([a, b]).

152. Prove that

lim
h→0

∫ a

−a

h

h2 + x2
dx = π.

153. Prove that, if f : [−1, 1] −→ R is continuous, then

lim
h→0

∫ 1

−1

h

h2 + x2
f(x)dx = πf(0).

17


