Set Theory (Math 112) First Midterm

Fall 2002
Dogan Bilge
June 7, 2004

1 Binary Tree

A binary tree is a partial ordered set $(T,<)$ such that
i) T has a smallest element, i.e. there is an $r \in T$ such that $r \leq x$ for all $x \in T$.
ii) For all $x \in T$, the set $\{y: y<x\}$ of predecessors of x is finite and linearly ordered by $<$.
iii) For all $x \in T$, there are exactly two immediate successors of x, i.e. there are two elements $y \neq z$ such that $y, z>x$ and if $t>x$ then either $t \geq y$ or $t \geq z$.

A branch \mathcal{B} in a binary tree is a totally ordered subset such that for all $x \in \mathcal{B}$, if $y<x$ then $y \in \mathcal{B}$.

Ia. Show that the set of elements that have exactly n predecessors is finite. Show that this set has exactly 2^{n} elements. Conclude that a binary tree is countably infinite.

Ib. Show that any two distinct branches intersect in a finite set.
Ic. Show that any two binary trees are isomorphic.
Id. Show that there is a one to one correspondence between a binary tree and the set of finite sequences of zeroes and ones.

Ie. Show that there are uncountably many branches in a binary tree.
If. Conclude that \mathbb{N} has uncountably many infinite subsets whose two by two intersections are all finite.

2 Orders

A total order $(T,<)$ is called discrete if any of its elements has a unique immediate predecessor and a unique immediate successor, i.e. if for any $x \in T$ there
are unique $s, p \in T$ such that $p<x<s$ and for any $y<x<z$ we have $y \leq p$ and $z \geq s$.

IIa. Find two non-isomorphic countable discrete orders.
IIb. Find an uncountable discrete order.
A total order $(T,<)$ is called dense if for any $x, y \in T$ with $x<y$, there is a $z \in T$ such that $x<z<y$. A total order is said to be without end points if it has neither first nor last element.

IIc. Show that a discrete order and a dense order cannot be isomorphic.
IId. Find an uncountable dense order without end points.
IIe. Find two non-isomorphic countable dense orders.
IIf. Find an uncountable order which is neither dense or discrete or a wellorder.

IIg. Show that there are uncountably many non-isomorphic countable wellorders.

IIh. Show that any two countable dense orders without end points are isomorphic.
IIi. Find two nonisomorphic uncountable dense order without end points.

