
Correction of the Second Midterm

Math 120B (Fall 1994)

Ali Nesin

July 21, 2002

1. Let A be an abelian group. Let B := {a ∈ A : a has finite order}.
1a. Show that B is a subgroup of A.
Recall that a ∈ A has finite order if and only if an = 1 for some natural

number n > 0. Thus,

B := {a ∈ A : an = 1 for some natural number n > 0}.
Since 11 = 1, 1 is in B.
Assume a is in B. We want to show that a−1 is also in B. Since a is in B,

an = 1 for some n > 0. Since (a−1)n = (an)−1 = 1−1 = 1 (the first equality has
been proved in class), a−1 is also in B.

Assume a1, a2 ∈ B. We want to show that a1a2 ∈ B. Since a1 and a2 are in
B, there are positive integers n1 and n2 such that an1

1 and an2
2 = 1. Now,

(a1a2)n1n2 = an1n2
1 an1n2

2 = (an1
1 )n2(an2

2 )n1 = 1n21n1 = 1 · 1 = 1.

Therefore a1a2 has finite order and it is in B.

1b. Show that in the group A/B, the order of every nonidentity
element is infinite.

Let aB ∈ A/B be an element of finite order. We want to show that aB
is the identity element of the group A/B, i.e. we want to show that aB = B,
i.e. we want to show that a ∈ B. Since aB has finite order, (aB)n is equal to
the identity element of A/B, which is B. So, (aB)n = B. But (aB)n = anB.
Hence anB = B. This means that an ∈ B. Note that, till now, we did not
use the definition of B. Since an ∈ B, from the definition of B, it follows that
(an)m = 1 for some positive integer m. Hence anm = 1 and a has finite order.
Therefore a ∈ B.

2. We consider R as a group under addition. Since Z ≤ R, we can
consider the group G := R/Z.

2a. Show that every element of G can be written as r +Z for some
unique r ∈ R with 0 ≤ r < 1.
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Let a + Z be an element of R/Z. We can write

a = r + z

for some z ∈ Z and r ∈ [0, 1). For example, if a = 3.14, we can take z = 3 and
r = 0.14. If a = −5, 4, we can take z = −6 and r = 0.6. In general z is equal to
the integer part [a] of a and r = a− [a]. Now a + Z = r + z + Z = r + Z. This
shows that every element of R/Z can be written as r + Z for some r ∈ [0, 1).

We now show the uniqueness. Assume that for 0 ≤ r, s < 1, r + Z = s + Z.
We want to show that r = s. Since r+Z = s+Z, r−s ∈ Z. But r−s ∈ (−1, 1).
Therefore r − s = 0 and r = s.

2b. Show that if q ∈ Q, then q + Z is an element of finite order of
G.

Let q = m/n. Then n(q +Z) = nq +Z = m +Z = Z. Therefore the order of
q + Z is finite (it divides n).

2c. Find all elements of order 2, 3 and 6 of G.
Let r + Z be an element of order 6 of G. By part (a), we may assume that

r ∈ [0.1). Since the order of the element r + Z of R/Z is 6,

Z = 6(r + Z) = 6r + Z.

Therefore, 6r ∈ Z and r is equal to one of 0/6, 1/6, 2/6, 3/6, 4/6, 5/6. But it
is easy to see that

0/6 + Z has order 1
2/6 + Z has order 3
3/6 + Z has order 2
4/6 + Z has order 3

Therefore only 1/6 + Z and 5/6 + Z have order 6.
Similarly, the only element of order 2 is 1/2 +Z and the elements of order 3

are 1/3 + Z and 2/3 + Z.

2d. For a fixed integer n > 0, find all elements of order n of G.
The calculations above suggest and one can prove in a similar way that the

set of elements of order n is {n/m + Z : n and m are prime to each other}.
3. Let G be a group and let H ¢ G be a normal subgroup of G.
3a. Show that CG(H) := {g ∈ G : gh = hg for all h ∈ H} is a normal

subgroup of G.
We have seen in the first midterm that CG(H) is a subgroup of G for any

subset H of G. Thus we only need to prove that CG(H) is normal in G. We
have to show that for any g ∈ G,

g−1CG(H)g ⊆ CG(H).
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Let c ∈ CG(H). Thus c commutes with every element of H. We want to show
that

g−1cg ∈ CG(H).

Thus we want to show that g−1cg commutes with every element of H. Accord-
ingly, let h be any element of H and try to show that g−1cg and h commute
with each other, i.e. that

(1) g−1cg · h = h · g−1cg.

We know that ghg−1 ∈ H, because H is normal in G. Since ghg−1 ∈ H and
since c commutes with every element of H, c commutes with ghg−1. Thus

c · ghg−1 = ghg−1 · c.

(1) follows from this easily.

3b. For x ∈ G, define B(x) := {g ∈ G : g−1x−1gx ∈ H}. Show that
B(x) is a subgroup of G that contains H.

Since 1−1x−11x = 1 ∈ H, 1 is in B(x).
Let g be an element of B(x). Thus

(2) g−1x−1gx ∈ H

We want to show that g−1 is also in B(x), i.e. that

gx−1g−1x ∈ H.

By (2), (g−1x−1gx)−1 ∈ H, i.e. x−1g−1xg ∈ H. Now using the fact that H is
normal in G, we get g(x−1g−1xg)g−1 ∈ H, i.e. gx−1g−1x ∈ H. This is what we
wanted to prove.

Let g1, g2 be two elements of B(x). Thus

(3) g−1
1 x−1g1x ∈ H and g−1

2 x−1g2x ∈ H.

We want to show that g1g2 ∈ B(x), i.e. that (g1g2)−1x−1(g1g2)x ∈ H, i.e. that

(4) g−1
2 g−1

1 x−1g1g2x ∈ H.

Since
g−1
2 g−1

1 x−1g1g2x = g−1
2 (g−1

1 x−1g1x)g2 · (g−1
2 x−1g2x),

by formulas in (3) and by the fact that H is normal in G, (4) follows.
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