First Midterm
 Math 120B (Fall 1994)

Ali Nesin

May 12, 2009

Math 120 A
Correction of the First Midterm
Ali Nesin
November 1994

1. Let G be a group.

1a. For $a \in G$, define $C_{G}(a)=\{g \in G: g a=a g\}$. Show that $C_{G}(a)$ is a subgroup of G.

We first show that the subset $C_{G}(a)$ is closed under the product. Let $g, h \in$ $C_{G}(a)$. Therefore we know that

$$
\begin{equation*}
g a=a g \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
h a=a h \tag{2}
\end{equation*}
$$

We want to show that $g h \in C_{G}(a)$, i.e. that $(g h) a=a(g h)$. We compute directly by using associativity and equations (1) and (2):

$$
(g h) a=g(h a) \stackrel{(2)}{=} g(a h)=(g a) h \stackrel{(1)}{=}(a g) h=a(g h) .
$$

Therefore $(g h) a=a(g h)$ and $g h \in C_{G}(a)$.
We next show that $C_{G}(a)$ is closed under inversion, i.e. that if $g \in C_{G}(a)$, then $g^{-1} \in C_{G}(a)$. Let $g \in C_{G}(a)$. Therefore (1) holds. Multiply both sides of (1) by g^{-1} to obtain $a g^{-1}=g^{-1} a$. Therefore $g^{-1} \in C_{G}(a)$.

Finally we show that $1 \in C_{G}(a)$. This is trivial, because $1 a=a=a 1$.
All these show that $C_{G}(a)$ is a subgroup.
1b. For $A \subseteq G$, define $C_{G}(A)=\{g \in G: g a=$ ag for all $a \in A\}$. Show that $C_{G}(A)$ is a subgroup of G.

Note that an element g is in $C_{G}(A)$ if and only if g is in $C_{G}(a)$ for all $a \in A$. Thus

$$
C_{G}(A)=\cap_{a \in A} C_{G}(a) .
$$

Since, by part (a), each $C_{G}(a)$ is a subgroup and since intersection of subgroups is a subgroup, $C_{G}(A)$ is also a subgroup.

1c. Let $Z(G)=\{z \in G: z g=g z$ for all $g \in G\}$. Show that $Z(G)$ is a subgroup of G.

Clearly $Z(G)=C_{G}(G)$. Therefore $Z(G)$ is a subgroup by part (b).
2. Let $\phi: G \longrightarrow H$ be a homomorphism between two groups G and H.

2a. Show that $\phi(1)=1$.
We compute directly: $\phi(1)=\phi(1 \cdot 1)=\phi(1) \phi(1)$. Simplifying $\phi(1)$ from both sides, we get $\phi(1)=1$.

2b. Show that $\phi\left(x^{-1}\right)=\phi(x)^{-1}$ for all $x \in G$.
Using part (2a), we compute:

$$
1 \stackrel{(2 a)}{=} \phi(1)=\phi\left(x x^{-1}\right)=\phi(x) \phi\left(x^{-1}\right) .
$$

Multiplying both sides of the equality above by $\phi(x)^{-1}$ from the left, we get

$$
\phi(x)^{-1}=\phi\left(x^{-1}\right)
$$

2c. Show that the subset $\{g \in G: \phi(g)=1\}$ of G is a subgroup of G.
Let $K=\{g \in G: \phi(g)=1\}$. We want to show that K is a subgroup of G.
We first show that K is closed under the multiplication of G. Let $g, h \in K$. Thus $\phi(g)=1=\phi(h)$. We want to show that $g h \in K$, i.e. that $\phi(g h)=1$. We compute: $\phi(g h)=\phi(g) \cdot \phi(h)=1 \cdot 1=1$.

Next we show that K is closed under inversion. Let $g \in K$. Thus $\phi(g)=1$. We want to show that $g^{-1} \in K$, i.e. that $\phi\left(g^{-1}\right)=1$. We compute using part (2b):

$$
\phi\left(g^{-1}\right) \stackrel{(2 b)}{=} \phi(g)^{-1}=1^{-1}=1
$$

Finally we show that $1 \in K$. This is part (a): $\phi(1)=1$.
These show that K is a subgroup of G.
2d. Show that the image of ϕ is a subgroup of H. (Recall that the image of ϕ is the set $\phi(G)=\{h \in H: h=\phi(g)$ for some $g \in G\}$.

We first show that $\phi(G)$ is closed under the multiplication of H. Let $h_{1}, h_{2} \in$ $\phi(G)$. Thus

$$
\begin{equation*}
h_{1}=\phi\left(g_{1}\right) \quad \text { and } \quad h_{2}=\phi\left(g_{2}\right) \tag{3}
\end{equation*}
$$

for some $g_{1}, g_{2} \in G$. We want to show that $h_{1} h_{2} \in \phi(G)$, i.e. that $h_{1} h_{2}=\phi(g)$ for some $g \in G$. As the following computation will show it is enough to take $g=g_{1} g_{2}$:

$$
h_{1} h_{2} \stackrel{(3)}{=} \phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right)
$$

We next show that $\phi(G)$ is closed under inversion. Let $h \in \phi(G)$. Thus $h=\phi(g)$ for some $g \in G$. We want to show that $h^{-1} \in \phi(G)$. We compute using part (2b):

$$
h^{-1}=\phi(g)^{-1} \stackrel{(2 b)}{=} \phi\left(g^{-1}\right)
$$

Finally we show that $1 \in \phi(G)$. We need to show that $1=\phi(g)$ for some $g \in G$. But, by part (2a), $1=\phi(1)$. Therefore we can take $g=1$.

All these show that $\phi(G)$ is a subgroup of G.

