Final
 Math 120B (Fall 1994)

Ali Nesin
Istanbul Bilgi University

July 20, 2002

1. Find all elements of order 5,6 and 7 of $\operatorname{Sym}(5)$.
2. Let G be a group and H be a subgroup of G. Show that the map

$$
g H \longmapsto H g^{-1}
$$

is a bijection between the set of left cosets of H in G and the set of right cosets of H in G.
3. Let G be a group and H a normal subgroup of G.

3a. Show that the map

$$
g \longmapsto g H
$$

is a group homomorphism from G onto G / H.
3b. What is the kernel of the above homomorphism?
4. Let $\phi: G \longrightarrow H$ be a surjective homomorphism between two groups. Let K be a normal subgroup of G. Show that $\phi(K)$ is a normal subgroup of H.
5. Find all homomorphisms from \mathbb{Z} into itself.
6. Let $G:=\left\{\left(\begin{array}{ll}x & y \\ z & t\end{array}\right): x, y, z, t \in \mathbb{Z}\right.$ and $\left.x t-y z=1\right\}$.

6a. Is G a group? Why? What is the inverse of the element $\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ of G ?
6b. For an integer n, define

$$
G_{n}:=\left\{\left(\begin{array}{ll}
x & y \\
z & t
\end{array}\right) \in G: x, t \in 1+n \mathbb{Z} \text { and } y, z \in n \mathbb{Z}\right\}
$$

Show that G_{n} is a normal subgroup of G and that G / G_{n} is finite.

