PH.D. COMPREHENSIVE EXAMINATION ALGEBRA SECTION

January 1995

Part I. Do three (3) of these problems.

- **I.1.** If a subgroup G of the symmetric group S_n contains an odd permutation, then |G| is even and exactly half the elements of G are odd permutations.
- **I.2.** Let R be a commutative ring with no nonzero nilpotent elements (that is, $a^n = 0$ implies a = 0). If the polynomial $f(X) = a_0 + a_1 X + \ldots + a_m X^m$ in R[X] is a zero-divisor (that is, g(X)f(X) = 0 for some nonzero polynomial $g(X) \in R[X]$), prove that there is an element $b \neq 0$ in R such that $ba_0 = ba_1 = \ldots ba_m = 0$.
- **I.3.** Let V be a finite-dimensional vector space over a field F. An endomorphism ϕ of V is called a *pseudoreflection* if $\phi 1$ has rank at most 1. Prove:
 - a) ϕ is a pseudoreflection precisely if there exists a basis of V such that the matrix of ϕ has the form

$$\begin{bmatrix} * & * & * & \dots & * \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

b) Show that the Jordan canonical form of a pseudoreflection ϕ is

$$\begin{bmatrix} 1 & 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} * & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

I.4. Let $F \supseteq K$ be an algebraic extension of fields and let R be a subring of F with $R \supseteq K$. Show that R is a field.

Part II. Do two (2) of these problems.

- **II.1.** Let G be a finite group and let H be a proper subgroup of G. Show that G is not the set-theoretic union of all conjugates of H.
- **II.2.** Let K be the splitting field over the rationals \mathbb{Q} for the polynomial f(x). For each of the following examples, find the degree $[K:\mathbb{Q}]$, determine the structure of the Galois group $G(K/\mathbb{Q})$, describe its action on the roots of f(x) and identify the group.
 - a) $f(x) = x^4 3$
 - b) $f(x) = x^4 + x^2 6$
- **II.3.** Let G be a group of order $165 = 3 \cdot 5 \cdot 11$. Prove:
 - a) G has a normal Sylow 11-subgroup, say C.
 - b) G/C is cyclic. (HINT: Show that every group of order 15 is cyclic.)
 - c) G has normal subgroups of orders 33 and 55.