Algebra

Math 211 Midterm

November 11, 2003

Ali Nesin

1. How many abelian groups are there up to isomorphism of order 67500? (5 pts.)

Answer: Since $67500 = 675 \times 10^2 = 25 \times 27 \times 10^2 = 2^2 \times 3^2 \times 5^4$, the answer is $2 \times 2 \times 5 = 20$

For the 2-part of the group we have two choices: $Z/2Z \times Z/2Z$ and Z/4Z. For the 3-part of the group we have two choices: $Z/3Z \times Z/3Z$ and Z/9Z. For the 5-part of the group we have five choices:

 $\begin{array}{rclcrcl} \mathbb{Z}/5\mathbb{Z} & \times & \mathbb{Z}/5\mathbb{Z} & \times & \mathbb{Z}/5\mathbb{Z} & \times & \mathbb{Z}/5\mathbb{Z}, \\ \mathbb{Z}/5\mathbb{Z} & \times & \mathbb{Z}/5\mathbb{Z} & \times & \mathbb{Z}/25\mathbb{Z}, \\ \mathbb{Z}/625\mathbb{Z}, & & & \mathbb{Z}/25\mathbb{Z} \\ \mathbb{Z}/25\mathbb{Z} & \times & \mathbb{Z}/25\mathbb{Z} \end{array}$

2. Let $Z(p^{\infty})$ be the Prüfer p-group. Prove or disprove: $Z(p^{\infty}) \approx Z(p^{\infty}) \oplus Z(p^{\infty})$. (5 pts.)

Disproof: The first one has p - 1 elements of order p, the second one has $p^2 - 1$ elements of order p, so that these two groups cannot be isomorphic.

3. Show that a subgroup of index 2 of a group is necessarily normal. (5 pts.) **Proof:** Let H be a subgroup of index 2 of G. Let $a \in G \setminus H$. Then $G = H \sqcup Ha = H \sqcup aH$, so that $aH = G \setminus H = Ha$, hence aH = Ha. If $a \in H$, aH = Ha as well. So aH = Ha all $a \in G$ and $H \triangleright G$.

4. Show that $Q^* \approx (Z/2Z) \oplus (\oplus_{\omega} Z)$. (5 pts.)

Proof: Let $q \in \mathbb{Q}^*$. Then q = a/b for some $a, b \in \mathbb{Z} \setminus \{0\}$. Decomposing a and b into their prime factorization, we can write q as a \pm product of (negative or positive) powers of prime numbers. Set,

$$q = \varepsilon(q) \prod_{p \text{ prime}} p^{\operatorname{val}_p(q)}$$

where $\operatorname{val}_p(q) \in \mathbb{Z}$ and $\varepsilon(q) = \pm 1$ depending on the sign of q. Note that all the $\operatorname{val}_p(q)$ are 0 except for a finite number of them. Let $\varphi : \mathbb{Q}^* \to (\mathbb{Z}/2\mathbb{Z}) \oplus (\bigoplus_{\omega} \mathbb{Z})$ be defined by

 $\varphi(\mathbf{q}) = (\varepsilon(q), \operatorname{val}_2(q), \operatorname{val}_3(q), \operatorname{val}_5(q), \dots)$

It is clear that φ is an isomorphism of groups. (Here we view Z/2Z as the multiplicative group $\{1, -1\}$).

5. Find $|Aut(Z/p^nZ)|$. (10 pts.)

Solution. The group $Z/p^n Z$ being cyclic (generated by $\underline{1}$, the image of 1), any endomorphism φ of $Z/p^n Z$ is determined by $\varphi(\underline{1})$. Then $\varphi(\underline{x}) = x\varphi(\underline{1})$ for all $x \in Z$. Conversely any $\underline{a} \in Z/p^n Z$ gives rise to a homomorphism φ_a via $\varphi_a(\underline{x}) = x\underline{a}$. In other words $\operatorname{End}(Z/p^n Z) \approx Z/p^n Z$ via $\varphi \mapsto \varphi(1)$ as rings with identity. Thus $\operatorname{Aut}(\mathbb{Z}/p^n\mathbb{Z}) = \operatorname{End}(\mathbb{Z}/p^n\mathbb{Z})^* \approx (\mathbb{Z}/p^n\mathbb{Z})^* = \{\underline{a} : a \text{ prime to } p\} = \{\underline{a} : a \text{ not divisible by } p\} = \mathbb{Z}/p^n\mathbb{Z} \setminus p\mathbb{Z}/p^n\mathbb{Z} \text{ and has } p^n - p^{n-1} \text{ elements.}$

6. What is $\text{Hom}(\mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/6\mathbb{Z})$? More generally, what is $\text{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$? How many elements does it have? (15 pts.)

Answer: Since Z/nZ is cyclic and generated by $\underline{1}$ (the image of 1 in Z/nZ), any element φ of Hom(Z/nZ, Z/mZ) is determined $\varphi(\underline{1}) \in Z/mZ$. Let

$$val_1 : Hom(Z/nZ, Z/mZ) \longrightarrow Z/mZ$$

be the map determined by $\operatorname{val}_1(\varphi) = \varphi(\underline{1})$. This is a homomorphism of (additive) groups. Furthermore it is one to one. However val_1 is not onto as in Question 5, because not all $\underline{a} \in \mathbb{Z}/m\mathbb{Z}$ gives rise to a well-defined function $\underline{x} \mapsto xa$.

Claim: An element $\underline{a} \in \mathbb{Z}/m\mathbb{Z}$ gives rise to a well-defined function $\underline{x} \mapsto x\underline{a}$ if and only if m/d divides a where $d = \gcd(m, n)$.

Proof of the Claim: Assume m/d divides awhere $d = \gcd(m, n)$. We want to show that the map $\underline{x} \mapsto x\underline{a}$ from $\mathbb{Z}/n\mathbb{Z}$ into $\mathbb{Z}/m\mathbb{Z}$ is well-defined. Indeed assume $\underline{x} = \underline{y}$. Then n divides x - y. So na divides xa - ya. By hypothesis, it follows that nm/d divides xa - ya. Since $nm/d = \operatorname{lcm}(m, n)$, we get that $\operatorname{lcm}(m, n)$ divides xa - ya. Hence m divides xa - ya. It follows that $x\underline{a} = y\underline{a}$.

Conversely, assume that the function $\underline{x} \mapsto x\underline{a}$ from Z/nZ into Z/mZ is well-defined. Then $n\underline{a} = 0\underline{a} = \underline{0}$ and m divides na. Hence m/d divides (n/d)a. Since n/d and m/d are prime to each other we get that m/d divides a. This proves the claim.

Now we continue with the solution of our problem. The claim shows that the homomorphism

$$\operatorname{val}_1 : \operatorname{Hom}(\mathbf{Z}/n\mathbf{Z}, \mathbf{Z}/m\mathbf{Z}) \longrightarrow (m/d)\mathbf{Z}/m\mathbf{Z}$$

is an isomorphism. We can go further and prove that $(m/d)Z/mZ \approx Z/dZ$ Claim: If n = mp then $mZ/nZ \approx Z/pZ$.

Proof of the Claim: Let $\varphi : \mathbb{Z} \to m\mathbb{Z}/n\mathbb{Z}$ be defined by $\varphi(x) = \underline{mx}$. Clearly φ is a homomorphism and onto. Its kernel is $\{x \in \mathbb{Z} : n \text{ divides } mx\} = \{x \in \mathbb{Z} : mp \text{ divides } mx\} = \{x \in \mathbb{Z} : p \text{ divides } x\} = p\mathbb{Z}$. So $\mathbb{Z}/p\mathbb{Z} \approx m\mathbb{Z}/m\mathbb{Z}$.

Thus Hom $(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \approx \mathbb{Z}/d\mathbb{Z}$ where $d = \gcd(m, n)$.

7. Let p be a prime, A a finite p-group and $\varphi \in \operatorname{Aut}(A)$ an automorphism of order p^n for some n. Show that $\varphi(a) = a$ for some $a \in A^{\#}$. (10 pts.)

Proof: Let $G = \langle \varphi \rangle$. Then $|G| = p^n$ and G acts on $A^{\#}$. For $a \in A^{\#}$, there is a bijection between the G-orbit Ga of a and the coset space G/G_a where $G_a = \{g \in G : g(a) = a\}$ given by $gG_a \mapsto ga$. Thus $|Ga| = |G/G_a|$ and $|A^{\#}| = |\Box_a \ Ga| = \Sigma_a \ |Ga| = \Sigma_a \ |G/G_a|$.

If $G_a \neq G$ for all a, then $|G/G_a| = p^i$ for some $i \geq 1$ so that p divides $\Sigma_a |G/G_a| = |A^{\#}| = p^n - 1$, a contradiction. Thus $G_a \neq G$ for some a and for this a, |Ga| = 1, i.e. $Ga = \{a\}$ and $\varphi(a) = a$.

8. Let G be a group and $g \in G^{\#}$. Show that there is a subgroup H of G maximal with respect to the property that $g \notin H$. (10 pts.)

Proof: Let $Z = \{H \leq G : g \notin H\}$. Order Z by inclusion. Since the trivial group $1 \in Z, Z \neq \emptyset$. It is easy to show that if $(H_i)_I$ is an increasing chain from Z then $\cup_I H_i \in Z$. Thus Z is an inductive set. By Zorn's Lemma it has a maximal element, say H. Then H is a maximal subgroup of G not containing g.

9. A group G is called divisible if for every $g \in G$ and $n \in \mathbb{N} \setminus \{0\}$ there is an $h \in G$ such that $h^n = g$.

9a. Show that a divisible group cannot have a proper subgroup of finite index. (10 pts.)

Proof: Assume G is divisible. Let $H \leq G$ be a subgroup of finite index, say n. We first prove that G has a normal subgroup K of finite index contained in H.

Claim: A group G that has a subgroup of index n has a normal subgroup of index dividing n! and contained in H.

Proof of the Claim. Let G act on the left coset space G/H via g.(xH) = gxH. This gives rise to a homomorphism φ from G into Sym(G/H), and the latter is isomorphic to Sym(n). Thus $\text{Ker}(\varphi)$ is a normal subgroup and φ gives rise to an embedding of $G/\text{Ker}(\varphi)$ into Sym(n). Thus $|G/\text{Ker}(\varphi)|$ dives n! and $\text{Ker}(\varphi)$ is a normal subgroup of index dividing n!

An easy calculation shows that $\operatorname{Ker}(\varphi) = \{g \in G : g(xH) = xH \text{ all } g \in G\} = \bigcap_{x \in G} H^x \leq H$. This proves the claim.

Let K be the normal subgroup of index m of G. Let $a \in G$. Let $b \in G$ be such that $a = b^m$. Then $a = b^m \in K$ (because the group G/K has order m) and so G = K.

9b. Conclude that a divisible abelian group cannot have a proper subgroup which is maximal with respect to being proper. (10 pts.)

Proof: Let G be a divisible abelian group. Let H < G be a maximal subgroup of G. Then G/H has no nontrivial proper subgroups. Thus G/H is generated by any of its nontrivial elements. In particular G/H is cyclic. Since G/H cannot be isomorphic to Z (because Z has proper nontrivial subgroups, like 2Z), G/H is finite. By the question above H = G.

10. Let G be a group. Let $H \triangleright G$.

10a. Assume Z \approx H. Show that $C_G(H)$ has index 1 or 2 in G. (10 pts.)

Proof: Any element of G gives rise to an automorphism of H (hence of Z) by conjugation. In other words, there is a homomorphism of groups $\varphi : G \to \operatorname{Aut}(H) \approx \operatorname{Aut}(Z)$ given by $\varphi(g)(h) = h^g$ for all $h \in G$. The kernel of φ is clearly $C_G(H)$. Thus $G/C_G(H)$ embeds in $\operatorname{Aut}(Z)$. But Z has only two generators, 1 and -1 and any automorphism of Z is determined by its impact on 1, which must be 1 or -1. Thus $|\operatorname{Aut}(Z)| = 2$. This proves it.

10b. Assume H is finite. Show that $C_G(H)$ has finite index in G. (5 pts.)

Proof: As above. φ is a homomorphism from G into the finite group Aut(H) and the kernel of this automorphism is $C_G(H)$.