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1. How many abelian groups are there up to isomorphism of order 67500?
(5 pts.)

Answer: Since 67500 = 675 × 102 = 25 × 27 × 102 = 22 × 32 × 54,
the answer is 2 × 2 × 5 = 20

For the 2-part of the group we have two choices: Z/2Z × Z/2Z and Z/4Z.
For the 3-part of the group we have two choices: Z/3Z × Z/3Z and Z/9Z.
For the 5-part of the group we have five choices:
Z/5Z × Z/5Z × Z/5Z × Z/5Z,
Z/5Z × Z/5Z × Z/25Z,
Z/5Z × Z/125Z,
Z/625Z,
Z/25Z × Z/25Z
2. Let Z(p∞) be the Prüfer p-group. Prove or disprove: Z(p∞) ≈ Z(p∞) ⊕

Z(p∞). (5 pts.)
Disproof: The first one has p − 1 elements of order p, the second one has

p2 − 1 elements of order p, so that these two groups cannot be isomorphic.
3. Show that a subgroup of index 2 of a group is necessarily normal. (5 pts.)
Proof: Let H be a subgroup of index 2 of G. Let a ∈ G \ H. Then

G = H t Ha = H t aH, so that aH = G \ H = Ha, hence aH = Ha. If
a ∈ H, aH = Ha as well. So aH = Ha all a ∈ G and H . G.

4. Show that Q∗ ≈ (Z/2Z) ⊕ (⊕ω Z). (5 pts.)
Proof: Let q ∈ Q∗. Then q = a/b for some a, b ∈ Z \ {0}.

Decomposing a and b into their prime factorization, we can write q as a±product
of (negative or positive) powers of prime numbers. Set,

q = ε(q)
∏

p prime pvalp(q)

where valp(q) ∈ Z and ε(q) = ±1 depending on the sign of q. Note that all
the valp(q) are 0 except for a finite number of them. Let ϕ : Q∗ → (Z/2Z) ⊕
(⊕ω Z) be defined by

ϕ(q) = (ε(q), val2(q), val3(q), val5(q), ... )
It is clear that ϕ is an isomorphism of groups. (Here we view Z/2Z as the

multiplicative group {1, -1}).
5. Find |Aut(Z/pnZ)|. (10 pts.)
Solution. The group Z/pnZ being cyclic (generated by 1, the image of 1),

any endomorphism ϕ of Z/pnZ is determined by ϕ( 1 ). Then ϕ( x ) = xϕ( 1 )
for all x ∈ Z. Conversely any a ∈ Z/pnZ gives rise to a homomorphism
ϕa via ϕa( x ) = xa. In other words End(Z/pnZ) ≈ Z/pnZ via ϕ 7→ ϕ(1)

1



as rings with identity. Thus Aut(Z/pnZ) = End(Z/pnZ)∗ ≈ (Z/pnZ)∗ = {a
: a prime to p} = {a : a not divisible by p} = Z/pnZ \ pZ/pnZ and has
pn − pn−1 elements.

6. What is Hom(Z/8Z, Z/6Z)? More generally, what is Hom(Z/nZ, Z/mZ)?
How many elements does it have? (15 pts.)

Answer: Since Z/nZ is cyclic and generated by 1 (the image of 1 in Z/nZ),
any element ϕ of Hom(Z/nZ, Z/mZ) is determined ϕ( 1 ) ∈ Z/mZ. Let

val1 : Hom(Z/nZ, Z/mZ) → Z/mZ

be the map determined by val1(ϕ) = ϕ( 1 ). This is a homomorphism of
(additive) groups. Furthermore it is one to one. However val1 is not onto as in
Question 5, because not all a ∈ Z/mZ gives rise to a well-defined function x
7→ xa.

Claim: An element a ∈ Z/mZ gives rise to a well-defined function x
7→ xa if and only if m/d divides a where d = gcd(m, n).

Proof of the Claim: Assume m/d divides awhere d = gcd(m, n). We want
to show that the map x 7→ xa from Z/nZ into Z/mZ is well-defined. Indeed
assume x = y . Then n divides x − y. So na divides xa - ya. By hypothesis,
it follows that nm/d divides xa - ya. Since nm/d = lcm(m, n), we get that
lcm(m, n) divides xa - ya. Hence m divides xa - ya. It follows that xa = ya.

Conversely, assume that the function x 7→ xa from Z/nZ into Z/mZ is well-
defined. Then na = 0a = 0 and m divides na. Hence m/d divides (n/d)a. Since
n/d and m/d are prime to each other we get that m/d divides a. This proves
the claim.

Now we continue with the solution of our problem. The claim shows that
the homomorphism

val1 : Hom(Z/nZ, Z/mZ) → (m/d)Z/mZ

is an isomorphism. We can go further and prove that (m/d)Z/mZ ≈ Z/dZ
Claim: If n = mp then mZ/nZ ≈ Z/pZ.
Proof of the Claim: Let ϕ : Z → mZ/nZ be defined by ϕ(x) = mx .

Clearly ϕ is a homomorphism and onto. Its kernel is {x ∈ Z : n divides
mx} = {x ∈ Z : mp divides mx} = {x ∈ Z : p divides x} = pZ. So
Z/pZ ≈ mZ/mZ.

Thus Hom(Z/nZ, Z/mZ) ≈ Z/dZ where d = gcd(m, n).
7. Let p be a prime, A a finite p-group and ϕ ∈ Aut(A) an automorphism

of order pn for some n. Show that ϕ(a) = a for some a ∈ A#. (10 pts.)
Proof: Let G = 〈ϕ〉. Then |G| = pn and G acts on A#. For a ∈ A#,

there is a bijection between the G-orbit Ga of a and the coset space G/Ga where
Ga = {g ∈ G : g(a) = a} given by gGa 7→ga. Thus |Ga| = |G/Ga| and

|A#| = |ta Ga| = Σa |Ga| = Σa |G/Ga|.
If Ga 6= G for all a, then |G/Ga| = pi for some i ≥ 1 so that p divides

Σa |G/Ga| = |A#| = pn − 1, a contradiction. Thus Ga 6= G for some a
and for this a, |Ga| = 1, i.e. Ga = {a} and ϕ(a) = a.
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8. Let G be a group and g ∈ G#. Show that there is a subgroup H of G
maximal with respect to the property that g /∈ H. (10 pts.)

Proof: Let Z = {H ≤ G : g /∈ H}. Order Z by inclusion. Since
the trivial group 1 ∈ Z, Z 6= ∅. It is easy to show that if (Hi)I is an
increasing chain from Z then ∪I Hi ∈ Z. Thus Z is an inductive set. By
Zorn’s Lemma it has a maximal element, say H. Then H is a maximal subgroup
of G not containing g.

9. A group G is called divisible if for every g ∈ G and n ∈ N \ {0}
there is an h ∈ G such that hn = g.

9a. Show that a divisible group cannot have a proper subgroup of finite index.
(10 pts.)

Proof: Assume G is divisible. Let H ≤ G be a subgroup of finite index,
say n. We first prove that G has a normal subgroup K of finite index contained
in H.

Claim: A group G that has a subgroup of index n has a normal subgroup of
index dividing n! and contained in H.

Proof of the Claim. Let G act on the left coset space G/H via g.(xH )
= gxH. This gives rise to a homomorphism ϕ from G into Sym(G/H), and the
latter is isomorphic to Sym(n). Thus Ker(ϕ) is a normal subgroup and ϕ gives
rise to an embedding of G/Ker(ϕ) into Sym(n). Thus |G/Ker(ϕ)| dives n! and
Ker(ϕ) is a normal subgroup of index dividing n!

An easy calculation shows that Ker(ϕ) = {g ∈ G : g(xH ) = xH all
g ∈ G} = ∩x∈G Hx ≤ H. This proves the claim.

Let K be the normal subgroup of index m of G. Let a ∈ G. Let
b ∈ G be such that a = bm. Then a = bm ∈ K (because the group
G/K has order m) and so G = K.

9b. Conclude that a divisible abelian group cannot have a proper subgroup
which is maximal with respect to being proper. (10 pts.)

Proof: Let G be a divisible abelian group. Let H < G be a maximal
subgroup of G. Then G/H has no nontrivial proper subgroups. Thus G/H is
generated by any of its nontrivial elements. In particular G/H is cyclic. Since
G/H cannot be isomorphic to Z (because Z has proper nontrivial subgroups,
like 2Z), G/H is finite. By the question above H = G.

10. Let G be a group. Let H . G.
10a. Assume Z ≈ H. Show that CG(H) has index 1 or 2 in G. (10

pts.)
Proof: Any element of G gives rise to an automorphism of H (hence of Z)

by conjugation. In other words, there is a homomorphism of groups ϕ : G →
Aut(H) ≈ Aut(Z) given by ϕ(g)(h) = hg for all h ∈ G. The kernel of
ϕ is clearly CG(H). Thus G/CG(H) embeds in Aut(Z). But Z has only two
generators, 1 and -1 and any automorphism of Z is determined by its impact on
1, which must be 1 or -1. Thus |Aut(Z)| = 2. This proves it.

10b. Assume H is finite. Show that CG(H) has finite index in G. (5 pts.)
Proof: As above. ϕ is a homomorphism from G into the finite group Aut(H)

and the kernel of this automorphism is CG(H).
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