Topology

Summer 2002

1. Let *X* be a topological space and $Y \subseteq X$ be a subset. What is the smallest topology on *Y* that makes the cannonical embedding $i: Y \to X$ continuous?

2. For each $i \in I$ let X_i be a topological space. What is the the smallest topology on $\prod_{i \in I} X_i$ that makes all the projection maps $\pi_j : \prod_{i \in I} X_i \to X_j$ ($j \in I$) continuous?

3. Take $I = \mathbb{N}$ and $X_i = \mathbb{N}$ with the discrete topology. Is the topology on $\prod_{i \in \mathbb{N}} \mathbb{N}$ induced from a metric?

Note that $\Pi_{i \in \mathbb{N}} \boxtimes$ can be regarded as functions from \mathbb{N} into \mathbb{N} .

5. Show that the set of injective maps from \mathbb{N} into \mathbb{N} is a closed set.

6. Show that the set of surjective maps from \mathbb{N} into \mathbb{N} is not a closed set.

5. Show that $Sym(\mathbb{N})$ is a topological space with respect to the induced metric.