Let X be a topological space and A a subset of X. An open cover of A is a collection $\left(U_{i}\right)_{i \in I}$ of open subsets U_{i} of X such that $A \subseteq \cup_{i \in I} U_{i}$. A subcover of an open cover $\left(U_{i}\right)_{i \in I}$ is an open cover of the form $\left(U_{i}\right)_{i \in J}$ for some subset J of I. The subcover $\left(U_{i}\right)_{i \in J}$ of the cover cover $\left(U_{i}\right)_{i \in I}$ is called finite if the index set J is finite.

A subset K of a topological space X is called compact if every open cover of K has a finite subcover.

1. Show that the union of finitely many compact subsets is compact.
2. Find compact subsets of a discrete space. (A topological space is discrete if every subset is open).
3. Show that a compact subset of a metric space is bounded.
4. Show that a compact subset of a metric space is closed.
5. Find an example of a metric space with a noncompact closed and bounded subset.
6. Let X be a metric space. Let $\left(x_{n}\right)_{n}$ be a sequence converging to $x \in X$. Show that the set $\left\{x_{n}: n \in \mathbb{N}\right\} \cup\{x\}$ is compact.
7. Show that the open interval $(0,1)$ of \mathbb{R} (with the Euclidean topology) is not compact.
8. Let $X=\mathbb{R} \cup\{\infty\}$ where ∞ is a new symbol. Consider the topology generated by all sets of the form (a, b) and $(-\infty, a) \cup(b, \infty) \cup\{\infty\}$ for $a, b \in \mathbb{R}$. Show that X is compact.
9. Is the topological space X above a metric space?
10. Show that a closed and bounded subset of \mathbb{R} is compact.
