Topology

First Midterm

Gümüşlük Akademisi

August 11th, 2000
Ali Nesin

Throughout, X stands for a topological space.

1. Let $U \subseteq X$ be open and $C \subseteq X$ be closed. Show that $U \backslash C$ is open in X. (2 pts.)
2. Show that X is Hausdorff iff the diagonal $\{(x, x): x \in X\}$ is closed in the product topology of $X \times X$. (5 pts.)
3. For $A \subseteq X$, define the exterior of A as $\operatorname{ext}(A)=\operatorname{int}\left(A^{c}\right)$.

3a. Show that $\operatorname{ext}(A)=\underline{A}^{\mathrm{c}}$ for all $A \subseteq X$.
3b. Show that, for two subsets A and B of X,

$$
\operatorname{ext}(A \cup B)=\operatorname{ext}(A) \cap \operatorname{ext}(B) \subseteq \operatorname{ext}(A) \cup \operatorname{ext}(B) \subseteq \operatorname{ext}(A \cap B)
$$

(8 pts.)
3c. Show that $\underline{A} \backslash \operatorname{int}(A)=(\operatorname{int}(A) \cup \operatorname{ext}(A))^{\mathfrak{c}} .(8$ pts. $)$
4. Let (X, d) be a metric space.

4a. Show that $|d(x, y)-d(a, b)| \leq d(x, a)+d(y, b)$ for all $a, b, x, y \in X$. (4 pts.)
4b. Show that the distance map $d: X \times X \rightarrow \mathbb{R}$ is continuous. (Hint: On $X \times X$ choose the taxi-cab metric and apply part a). (8 pts.)
5. Let X and Y be metric spaces, $f: X \rightarrow Y$ a function and $x \in X$. Show that f is continuous at a iff for every sequence $\left(x_{n}\right)_{n}$ of X that converges to $a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f(a)$. (8 pts.)
6. Let X and Y be metric spaces. Let $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ be sequences of X and Y respectively. Show that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=(x, y)$ iff $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$. (8 pts.)
7. Let ∞ and $-\infty$ be two new symbols. Set $\mathbb{R}^{*}=\mathbb{R} \cup\{\infty,-\infty\}$. Order \mathbb{R}^{*} as one should. Consider the topology on X^{*} generated by the open intervals of \mathbb{R} together with sets of the form $[-\infty, r)$ and $(r, \infty]$ for $r \in \mathbb{R}$. Show that \mathbb{R}^{*} is compact for that topology. (8 pts .)
8. Show that X is compact iff for every family $\left(C_{i}\right)_{i}$ of closed subsets, $\cap_{i} C_{i} \neq \varnothing$ whenever every finite intersection of the sets C_{i} is nonempty. (8pts.)
9. For $n>0$, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f_{n}(x)=\frac{\sin (n x)}{n}$. Show that the functions f_{n} converge to 0 uniformly, but that the derivatives f_{n}^{\prime} do not even converge pointwise to any function. (10 pts .)
10. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{1+x^{2}}$ is uniformly continuous. (10 pts.)
11. Find a metric space with no countable dense subset. (13 pts.)

