Topology HW14 Uniform Continuity Gümüşlük Akademisi August 9th, 2000 Ali Nesin

Let (X, d_X) and (Y, d_Y) be metric spaces. Let $f : X \to Y$ be a continuous function. Recall that this means that

 $\forall a \in X, \forall \varepsilon > 0 \exists \delta > 0$ such that $\forall x \in X, d_Y(f(x), f(a)) < \varepsilon$ whenever $d_X(x, a) < \delta$. Here δ depends on ε and on a, that is why we sometimes write $\delta_{\varepsilon, a}$ instead of just δ . The function f is called **uniformly continuous** if δ can be chosen independently from a; this means that

 $\forall \varepsilon > 0 \exists \delta > 0$ such that $\forall a, x \in X, d_Y(f(x), f(a)) < \varepsilon$ whenever $d_X(x, a) < \delta$.

1. Show that any constant function is uniformly continuous.

2. Show that if X = Y, the identity function is uniformly continuous.

3. Let $X = Y = \mathbb{R}$. Let $a, b \in \mathbb{R}$. Show that the function f given by f(x) = ax + b is uniformly continuous.

4. Let $X = Y = \mathbb{R}$. Show that the function f given by $f(x) = x^2$ is not uniformly continuous.

5. Show that the composition of two uniformly continuous functions is uniformly continuous.

6. Find compact metric spaces *X* and *Y* and a continuous function from *X* into a *Y* that is not uniformly continuous.

7. Show that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{1}{1+x^2}$ is uniformly continuous.