Topology HW12
Pointwise and Uniform Convergence
Gümüşlük Akademisi
August 7th, 2000
Ali Nesin

Let X be a set and (Y, d) a metric space. Let $\left(f_{n}\right)_{n}$ be a sequence of functions from X into Y. Given an element $x \in X$, we can form the sequence $\left(f_{n}(x)\right)_{n}$ of Y. This sequence may or may not converge in Y. Assume it converges to some element of Y. Let us call this element, that depends on $X, f(x)$. Thus $f(x)$ is defined to be $\lim _{n \rightarrow \infty} f_{n}(x)$ in case this limit exists. As we know this means that

$$
\forall \varepsilon>0 \exists N \text { such that for } n>N, d\left(f_{n}(x), f(x)\right)<\varepsilon .
$$

Note that the natural number N depends on ε but also on x; for this reason we sometimes write $N=N_{\varepsilon, x}$.

In case the sequence $\left(f_{n}(x)\right)_{n}$ converges for all $x \in X$, we can define the function f from X into Y by the rule

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) .
$$

We then say that the sequence $\left(f_{n}\right)_{n}$ of functions converges pointwise to the function f, in this case we write $\lim _{n \rightarrow \infty} f_{n}=f$. Thus $\lim _{n \rightarrow \infty} f_{n}=f$ iff

$$
\forall x \in X \forall \varepsilon>0 \exists N \text { such that for } n>N, d\left(f_{n}(x), f(x)\right)<\varepsilon .
$$

1. Let $Y=\mathbb{R}$ and, for $n>0$, let $f_{n}: X \rightarrow Y$ be the constant function $1 / n$. Show that $\lim f_{n}$ exists. Show that the natural number N of the definition can be chosen to depend only on ε.
2. Let $X=Y=\mathbb{R}$ and let $f_{n}: X \rightarrow Y$ be the function x / n. Show that $\lim f_{n}$ exists. Show that the natural number N of the definition cannot be chosen to be independent of x.
3. Let $X=[-1,2] Y=[0,1]$ and for $n>0$, let $f_{n}: X \rightarrow Y$ be the function defined by

$$
\begin{array}{ll}
f_{n}(x)=1 & \text { if }-1 \leq x \leq 0 \text { or } 1 \leq x \leq 2 \\
f_{n}(x)=-n x+1 & \text { if } 0 \leq x \leq 1 / n \\
f_{n}(x)=0 & \text { if } 1 / n \leq x \leq 1-1 / n \\
f_{n}(x)=n x+1-n & \text { if } 1-1 / n \leq x \leq 1 .
\end{array}
$$

3a. By sketching the graph of f_{n}, check that f_{n} is continuous for all $n=1,2,3, \ldots$
3b. Show that the sequence $\left(f_{n}\right)_{n}$ of functions converges pointwise to a noncontinuous function.

4a. Find a sequence $f_{n}:[0,1] \rightarrow[0,1]$ of continuous functions that converges pointwise to a function $f:[0,1] \rightarrow[0,1]$ which is nowhere continuous.

4b. A function $f:[0,1] \rightarrow[0,1]$ is called piecewise linear if its graph consists of a union of finitely many line segment. The length $l(f)$ of a piecewise linear function is the sum of the lengths of the line segments. Find a sequence $\left(f_{n}\right)_{n}$ of continuous piecewise linear functions that converges pointwise to a continuous piecewise linear function f such that $\lim _{n \rightarrow \infty} l\left(f_{n}\right) \neq l(f)$.
(Sinav tamamlanamamıştır.)

