Topology HW9

Gümüşlük Akademisi August 5th, 2000 Ali Nesin

X and Y stand for topological spaces.

A subset $C \subseteq X$ is called **compact** if any open covering of C has a finite subcovering.

1. Show that a function $f: X \to Y$ is continuous iff the inverse image of closed subsets of *Y* are closed in *X*.

2a. Let $\pi_1 : X \times Y \to X$ be the first projection. Show that the image of an open subset of $X \times Y$ under π_1 is open in *X*.

2b. Show that the image of a closed subset of $X \times Y$ under π_1 is not necessarily closed in *X*.

2c. Find topological spaces *X* and *Y* and a continuous function $f: X \to Y$ such that the image of open subsets of *X* are not necessarily open in *Y*.

3a. Show that \mathbb{R} is not a compact subset of \mathbb{R} under the usual Euclidean topology.

3b. Show that the image of a compact subset under a continuous map is compact.

3c. Is it true that the inverse image of a compact subset under a continuous map is always compact?

4a. Let $(a_i)_i$ and $(a_i)_i$ be an increasing and decreasing sequence of \mathbb{R} . Show that the intersection $\bigcap_i [a_i, b_i]$ is nonempty.

4b. Show that a closed bounded interval [a, b] of \mathbb{R} is compact. (**Hint:** Assume not. Consider an open covering of [a, b] without a finite subcovering. One of $[a, \frac{a+b}{2}]$

and $\left[\frac{a+b}{2}, b\right]$ does not have a finite subcovering. Repeat the argument with this closed subinterval, to get a chain of closed intervals of length half of the preceding one. Apply part 4a.)

4c. Is it true that closed bounded subsets of \mathbb{R} are compact?

4d. Show that a compact subset *C* of a metric space is bounded, i.e. there is an *r* such that for all $x, y \in C$, d(x, y) < r.

4e. Show that a compact subset *C* of a metric space is closed. (**Hint:** Let $x \in C^c$. For every $c \in C$ there are disjoint open subsets U_c containing *c* and V_c containing *x* (why). The open subsets $(U_c)_{c \in C}$ cover *C*).