Topology HW6

July 30th, 2000
Ali Nesin

1. Let (X, d) be a metric space. Let $a \in X$ and $r \in \mathbb{R}^{>0}$.

1a. Show that for $\mathrm{B}(a, r) \subseteq X \subseteq \underline{\mathrm{~B}}(a, r)$, we have $\underline{X}=\underline{\mathrm{B}}(a, r)$. Here, B and $\underline{\mathrm{B}}$ stand for the open and closed balls respectively.

1b. Does $\underline{X}=\underline{\mathrm{B}}(a, r)$ imply $\mathrm{B}(a, r) \subseteq X \subseteq \underline{\mathrm{~B}}(a, r)$?
2. (Product Topology). Let X and Y be topological spaces. The topology generated by sets of the form $U \times V$ where U and V are open subsets of X and Y respectively is called the product topology on $X \times Y$.

2a. If the only open subsets of X (resp. of Y) are \varnothing and X (resp. Y), what are the open subsets of $X \times Y$?

2b. Show that if the topologies on X and Y are generated by the metrics d_{X} and d_{Y}, then the topology on $X \times Y$ is generated by the usual metric

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)=\sqrt{d_{X}}\left(x_{1}, x_{2}\right)^{2}+d_{X}\left(y_{1}, y_{2}\right)^{2}\right.
$$

4. Let X be a topological space. Recall that a set \wp of open subsets of X is called a base if every open subset of X is a union of sets from \wp.

4a. Show that a set \wp of open subsets of X is a base if,
i) \wp covers X, i.e. $\cup \wp=X$.
ii) For every $x \in X$ and open subset U containing x, there is $V \in \wp$ such that $x \in V$ $\subseteq U$.

4c. Show that a set \wp of subsets of X is a base of the topology it generates if for every U and $V \in \wp$ and $x \in U \cap V$, there is a $W \in \wp$ such that $x \in W \subseteq U \cap V$.

4d. Let X and Y be topological spaces. Let \wp_{X} and \wp_{Y} be bases of X and Y respectively. Show that the set

$$
\wp=\left\{U \times V: U \in \wp_{X} \text { and } V \in \wp_{Y}\right\}
$$

is a base of the product topological space $X \times Y$.
5. (One-point Compactification). Let (X, d) be a metric space. Let ∞ be an element not in X. Let $X^{*}=X \cup\{\infty\}, \mathbb{R}^{*}=\mathbb{R} \cup\{\infty\}$. For $x, y \in X^{*}$, define

$$
d_{1}: X^{*} \times X^{*} \rightarrow \mathbb{R} \cup\{\infty\}
$$

by extending d and defining (for $x \in \mathbb{R}$)

$$
\begin{aligned}
d_{1}(x, \infty) & =\infty \\
d_{1}(\infty, \infty) & =0 .
\end{aligned}
$$

Extend also the order of \mathbb{R} to \mathbb{R}^{*} by defining $r<\infty$ for all $r \in \mathbb{R}$.
Consider the subsets of X^{*} of the form

$$
\left\{x \in X^{*}: d_{1}(a, x)<r\right\}
$$

or

$$
\left\{x \in X^{*}: d_{1}(a, x)>r\right\}
$$

for some $a \in X^{*}$ and $r \in \mathbb{R}^{*}$. Call these sets extended open balls. The topology generated on X^{*} by the extended open balls is called one-point compactification of X.

5a. Show that X is a subspace of X^{*}.
$\mathbf{5 b}$. Show that the extended open balls form a basis of X^{*}.

