Topology HW5

Gümüşlük Akademisi July 28th, 2000 Ali Nesin

Throughout *X* stands for a topological space.

1. Let *A* be a subset of *X*. Let

 $A^{\circ} = \bigcup \{ U \subseteq X : U \text{ is open and } U \subseteq A \}$

```
\underline{A} = \bigcap \{F \subseteq X : F \text{ is closed and } U \subseteq F\}
```

 A° and <u>A</u> are called the **interior** and the **closure** of A respectively.

1a. Show that <u>A</u> is closed, $A \subseteq \underline{A}$ and <u>A</u> is the smallest such subset of X.

1b. Show that A° is open, $A^{\circ} \subseteq A$ and A° is the largest such subset of *X*.

1c. Show that if $A \subseteq B$ then $A^{\circ} \subseteq B^{\circ}$.

1d. Show that if $A \subseteq B$ then $\underline{A} \subseteq \underline{B}$.

1e. Show that $A = \underline{A}$ iff A is closed.

1f. Show that $A = \overline{A^{\circ}}$ iff A is open.

1g. Show that $\underline{A} = \underline{A}$ and $A^{\circ} = A^{\circ \circ}$.

1h. Show that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.

1i. S how that $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$. Does the equality always hold?

1j. Show that $(A \cup B) = \underline{A} \cup \underline{B}$.

1k. Show that $\underline{A \cap B} \subseteq \underline{A} \cap \underline{B}$. Does the equality always hold?

2. A subset *A* of *X* is called **dense** in *X* if $\underline{A} = X$.

2a. Show that \mathbb{Q} is dense in \mathbb{R} (the usual topology).

2b. Suppose that the only open subsets of *X* are \emptyset and *X*. What are the dense subsets of *X*?

2c. Suppose that no proper subset of *X* is dense in *X*. What can you say about the topology of *X*?

3. (Induced topology). Let $Y \subseteq X$. We call a subset of Y open if it is the intersection of Y with an open subset of X.

3a. Show that this defines a topology on *Y*.

We say that the topology on *Y* is **induced** from *X* and that *Y* is a subspace of *X*.

3b. Consider \mathbb{Z} as a topological space induced from that of \mathbb{R} . What are the open subsets of \mathbb{Z} ?

3c. Let $Y \subseteq X$ and consider Y as an induced topological space. A subset A of Y has a closure and an interior in X and in Y. Denote these by $A^{\circ Y}$, $A^{\circ X}$, \underline{A}_Y , \underline{A}_X , the notation being self explanatory.

Let now $A \subseteq X$. What are the relation ships between

i) $\underline{A \cap Y}_{Y}$ and $\underline{A}_{X} \cap Y$ ii) $(A \cap Y)^{oY}$ and $A^{oX} \cap Y$?