Topology HW3
 "Topology generated by"

Gümüşlük Akademisi
July 25th, 2000
Ali Nesin
Let X be a set.

1. For each $i \in I$, let \mathfrak{I}_{i} be the set of open subsets of some topology on X; thus each \mathfrak{I}_{i} contains \varnothing and X, is closed under arbitrary unions and finite intersections. Show that $\cap_{i \in I} \mathfrak{I}_{i}$ is the set of open subsets of a topology, in other words show that
i) $\varnothing \in \cap_{i \in I} \mathfrak{I}_{i}$ and $X \in \cap_{i \in I} \mathfrak{I}_{i}$.
ii) $\cap_{i \in I} \mathfrak{I}_{i}$ is closed under arbitrary unions.
iii) $\cap_{i \in I} \mathfrak{I}_{i}$ is closed under finite intersections.
2. Let U be a set of subsets of X. Let \wp be the set of open subsets of topologies on X in which the elements of U are open. Show that $\cap \wp$ is the smallest topology on X in which the elements of U are open. This topology is called the topology generated by U.
3. Show that open subsets of the topology generated by U are arbitrary unions of the intersections of finitely many elements of U, together with X and \varnothing.
4. Show that if U is finite, then the topology generated by U has finitely many open subsets. This is false if we replace "finite" by countable as Question \#12 will show.
5. Assume $U=\{\{x\}: x \in X\}$. What are the open subsets of the topology generated by U ?
6. Assume $U=\{V \subseteq X:|V|=2\}$. What are the open subsets of the topology generated by U ?
7. Let n be a fixed natural number. Assume $U=\{V \subseteq X:|V|=n\}$. What are the open subsets of the topology generated by U ?
8. Let $U=\{V \subseteq X: X \backslash V$ is finite $\}$. What are the open subsets of the topology generated by U ?
9. Let A be a fixed subset of X and let $U=\{V \subseteq X: A \subseteq V\}$. What are the open subsets of the topology generated by U ?
10. Let $A \subseteq X$ and let $U=\{V \subseteq X: A \cap V=\varnothing\}$. What are the open subsets of the topology generated by U ?
11. Let $X=\mathbb{R}$ and $U_{1}=\{(a, b): a, b \in \mathbb{R}\}$.The topology generated by U_{1} is the usual topology on \mathbb{R}. Call this topology \mathfrak{I}_{1}.
12. Let $X=\mathbb{R}$ and $V=\{(a, b): a, b \in \mathbb{Q}\}$. Show that the topology generated by V is the usual topology \mathfrak{I}_{1} on \mathbb{R}. This shows that a countable set can generate uncountably many open subsets.
13. (Sorgenfrey Line). Let $X=\mathbb{R}$ and $U_{2}=\{[a, b): a, b \in \mathbb{R}\}$. Call \mathfrak{I}_{2} the topology generated by U_{2}. Show that every open subset of \mathfrak{I}_{1} is an open subset of \mathfrak{I}_{2}, but that the converse is false.
14. Let $X=\mathbb{R}$ and $U_{3}=\{[a, b]: a, b \in \mathbb{R}\}$. Call \mathfrak{I}_{3} the topology generated by U_{3}. Show that every open subset of \mathfrak{I}_{2} is an open subset of \mathfrak{I}_{3}, but that the converse is false.

Let \mathfrak{I} be a topology on X. If \mathfrak{I} is generated by a set U, then this set U is called a subbase of the topology \mathfrak{I}. Note that the set of open subsets of \mathfrak{I} is a subbase of \mathfrak{I}. A subbase U is called a base if U is closed under finite intersections. Note that if U is a base of a topology, then the open subsets of that topology are arbitrary unions of the elements of U.
15. Which of the above subbases is a base?
16. Show that a set U is a base of a topology \mathfrak{I}, if for every open subset A of X and every $x \in A$, there is a $B \in U$ such that $x \in B \subseteq A$.
17. Show that the usual topology on \mathbb{R}^{2} has a countable base.
18. Show that the usual topology on \mathbb{R}^{n} has a countable base.

