Topology HW3 "Topology generated by"

Gümüşlük Akademisi July 25th, 2000 Ali Nesin

Let *X* be a set.

1. For each $i \in I$, let \mathcal{J}_i be the set of open subsets of some topology on *X*; thus each \mathfrak{J}_i contains \emptyset and *X*, is closed under arbitrary unions and finite intersections. Show that $\bigcap_{i \in I} \mathcal{J}_i$ is the set of open subsets of a topology, in other words show that

i) $\emptyset \in \bigcap_{i \in I} \mathcal{G}_i$ and $X \in \bigcap_{i \in I} \mathcal{G}_i$.

ii) $\bigcap_{i \in I} \mathcal{J}_i$ is closed under arbitrary unions.

iii) $\bigcap_{i \in I} \mathcal{G}_i$ is closed under finite intersections.

2. Let U be a set of subsets of X. Let \wp be the set of open subsets of topologies on X in which the elements of U are open. Show that $\bigcap \wp$ is the smallest topology on X in which the elements of U are open. This topology is called the **topology** generated by U.

3. Show that open subsets of the topology generated by *U* are arbitrary unions of the intersections of finitely many elements of *U*, together with *X* and \emptyset .

4. Show that if U is finite, then the topology generated by U has finitely many open subsets. This is false if we replace "finite" by countable as Question #12 will show.

5. Assume $U = \{\{x\} : x \in X\}$. What are the open subsets of the topology generated by U?

6. Assume $U = \{V \subseteq X : |V| = 2\}$. What are the open subsets of the topology generated by U?

7. Let *n* be a fixed natural number. Assume $U = \{V \subseteq X : |V| = n\}$. What are the open subsets of the topology generated by *U*?

8. Let $U = \{V \subseteq X : X \setminus V \text{ is finite}\}$. What are the open subsets of the topology generated by U?

9. Let *A* be a fixed subset of *X* and let $U = \{V \subseteq X : A \subseteq V\}$. What are the open subsets of the topology generated by *U*?

10. Let $A \subseteq X$ and let $U = \{V \subseteq X : A \cap V = \emptyset\}$. What are the open subsets of the topology generated by *U*?

11. Let $X = \mathbb{R}$ and $U_1 = \{(a, b) : a, b \in \mathbb{R}\}$. The topology generated by U_1 is the usual topology on \mathbb{R} . Call this topology \mathfrak{I}_1 .

12. Let $X = \mathbb{R}$ and $V = \{(a, b) : a, b \in \mathbb{Q}\}$. Show that the topology generated by V is the usual topology \mathfrak{S}_1 on \mathbb{R} . This shows that a countable set can generate uncountably many open subsets.

13. (Sorgenfrey Line). Let $X = \mathbb{R}$ and $U_2 = \{[a, b) : a, b \in \mathbb{R}\}$. Call \mathfrak{I}_2 the topology generated by U_2 . Show that every open subset of \mathfrak{I}_1 is an open subset of \mathfrak{I}_2 , but that the converse is false.

14. Let $X = \mathbb{R}$ and $U_3 = \{[a, b] : a, b \in \mathbb{R}\}$. Call \mathfrak{I}_3 the topology generated by U_3 . Show that every open subset of \mathfrak{I}_2 is an open subset of \mathfrak{I}_3 , but that the converse is false.

Let \Im be a topology on X. If \Im is generated by a set U, then this set U is called a **subbase** of the topology \Im . Note that the set of open subsets of \Im is a subbase of \Im . A subbase U is called a **base** if U is closed under finite intersections. Note that if U is a base of a topology, then the open subsets of that topology are arbitrary unions of the elements of U.

15. Which of the above subbases is a base?

16. Show that a set U is a base of a topology \mathfrak{I} , if for every open subset A of X and every $x \in A$, there is a $B \in U$ such that $x \in B \subseteq A$.

17. Show that the usual topology on \mathbb{R}^2 has a countable base.

18. Show that the usual topology on \mathbb{R}^n has a countable base.