Topology HW2 Ali Nesin

July 23rd, 2000

Let (X, d) be a metric space. For $a \in X$ and $r \in \mathbb{R}$, define the open ball with **center** *a* and **radius** *r* as $B_d(a, r) = \{x \in X : d(x, a) < r\}$. A subset of *X* is called **open** (or *d*-open if confusion may arise) if it is the union of open balls (with varying centers and radii).

1. Let (X, d) be a metric space. Show that the open subsets of X have the following properties:

1a. *X* and \emptyset are open sets.

1b. Arbitrary union of open sets is open.

1c. Intersection of two open sets is open.

2. Let *X* be any set and define d(x, y) to be 0 if x = y and to be 1 otherwise. What are the open subsets of *X*?

3. Let *d* and δ be two metrics on the same set *X*. Assume that for any $a \in X$ and any $r \in \mathbb{R}^{>0}$, there is an $s \in \mathbb{R}^{>0}$ such that $B_{\delta}(a, s) \subseteq B_d(a, r)$. Show that any *d*-open subset of *X* is also δ -open.

Two metrics *d* and δ on the same set *X* are called **equivalent** if they define the same open sets.

4. Let (X, d) be a metric space. For $x, y \in X$, define $\delta(x, y) = \min(1, d(x, y))$. **4a.** Show that δ is a metric on X.

4b. Show that *d* and δ are equivalent.

5. Let
$$X = \mathbb{R}^n$$
 and for $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$, define
 $d(x, y) = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}$.
 $d_1(x, y) = |x_1 - y_1| + ... + |x_2 - y_2|$
 $d_2(x, y) = \max(|x_1 - y_1|, ..., |x_n - y_n|)$

5a. Show that these are metrics on \mathbb{R}^n .

5b. Show that they are all equivalent.

6a. Show that there are positive constants *a* and *b* such that for all $x \in \mathbb{R}^n$,

 $ad_1(x, 0) \le d(x, 0) \le bd_1(x, 0).$

Here X, d and d_1 are as in question 5. **6b.** Find the largest a and smallest b.

7. Let $(x_n)_n$ be a sequence in a metric space. Assume that the subsequences $(x_{2n})_n$, $(x_{2n+1})_n$ and $(x_{3n})_n$ are all convergent. Show that the sequence $(x_n)_n$ is convergent.

8. Prove that the convergence of a real sequence $(x_n)_n$ implies the convergence of the sequence $(|x_n|)_n$. Does the converse hold?