Topology I (Uniform Convergence) Midterm May 2001 Ali Nesin

Let X be a set and (Y, d) a metric space. For f, g two functions from X into Y, define

 $d_{\infty}(f, g) = \sup\{d(f(x), g(x)) : x \in X\} \in \mathbb{R} \cup \{\infty\}.$ Consider the set $B(X, Y) = \{f : X \to Y : f(X) \text{ is bounded}\}.$

1. Show that $d_{\infty}(f, g)$ is a real number for $f, g \in B(X, Y)$. (3 pts.)

2. Show that d_{∞} is a distance on B(X, Y). (3 pts.)

Recall that the sequence $(f_n : X \to Y)_n$ is said to **converge pointwise** to the function $f : X \to Y$ if for all $x \in X$,

for all $\varepsilon > 0$ there is an integer $N = N_{\varepsilon, x}$ depending on ε and x such that $d(f_n(x), f(x)) < \varepsilon$ for all n > N.

The sequence $(f_n)_n$ is said to **converge uniformly** to the function *f* if the integer *N* can be found independently of *x*, i.e. if

for all $\varepsilon > 0$ there is an integer $N = N_{\varepsilon}$ depending on ε alone such that $d(f_n(x), f(x)) < \varepsilon$ for all $x \in X$ and n > N.

i.e. if

for all $\varepsilon > 0$ there is an integer *N* such that $d_{\infty}(f_n, f) < \varepsilon$ for all n > N.

Clearly if $(f_n)_n$ converges uniformly to f, then $(f_n)_n$ converges pointwise to f. The converse is false as question #5 will show.

3. Let $Y = \mathbf{R}$ and let $(a_n)_n$ be a Cauchy sequence of \mathbf{R} . Let f_n be the constant function $f_n(x) = a_n$. Show that f_n converges pointwise to a function. Does f_n converge uniformly to a function? (3 pts.)

4. Let $(f_n : X \to Y)_n$ be a sequence of functions that converges pointwise to $f : X \to Y$.

4a. Show that $(f_n)_n$ converges uniformly to *f* iff the sequence $(d_{\infty}(f_n, f))_n$ converges to 0. (3 pts.)

4b (Cauchy's Criterion). Show that a sequence $(f_n : X \to \mathbf{R})_n$ of functions converges uniformly to a function iff for all $\varepsilon > 0$ there is an integer *N* such that for all $n, m > N, d_{\infty}(f_n, f_m) < \varepsilon$. Hint: What can *f* be? (10 pts.)

4c. Show that $B(X, \mathbf{R})$ is a complete metric space¹ (with respect to d_{∞}). (5 pts.)

5. Let X = Y = [0, 1]. Let $f_n(x) = x^n$.

¹ This means that every Caucy sequence with respect to the distance d_{∞} is convergent.

5a. To what function does the sequence $(f_n)_n$ converge pointwise? (2 pts.)

5b. Show that the sequence $(f_n)_n$ does not converge uniformly to any function. (5 pts.)

5c. Assume now that X = Y = [0, 1). What can you say about the convergence of $(f_n)_n$? (3 pts.)

5d. Assume now that X = Y = [0, a] for some a < 1. What can you say about the convergence of $(f_n)_n$? (3 pts.)

5e. Let X = [0, 1] and $Y = \mathbb{R}$. Let $f_n(x) = n^2 x(1 - x)^n$. Show that the sequence $(f_n)_n$ converges pointwise to the zero function, but that the convergence is not uniform. (5 pts.)

5f. Now take X = [0, 1] and $f_n(x) = xe^{-nx^2}$. Show that the sequence $(f_n)_n$ converges to the zero function uniformly. (5 pts.)

6. Let $(f_n : X \to Y)_n$ be a sequence of functions from a topological space X into a metric space Y. Assume the sequence $(f_n)_n$ converges uniformly to f.

6a. Assume X = (a, b) and that each f_n is continuous at some $c \in X$. Show that f is continuous at c as well. (6 pts.)

6b. Assume that each f_n is bounded. Show that f is bounded as well. (3 pts.)

6c. Assume that each f_n is bounded. Show that there is a uniform bound for the f_n i.e. for *a* ∈ *Y* there is an *M* such that $d(f_n(x), a) < M$ for all *n* and all $x \in X$. (5 pts.)

6d. Generalize #6a to general topological spaces. (15 pts.)

6e. Show that the set CB(X, Y) of continuous and bounded functions is a closed subset of B(X, Y). (4 pts.)

7a. Show that the set of sequences of functions $(f_n : X \to \mathbb{R})_n$ that converge uniformly is a vector space over \mathbb{R} . (7 pts.)

7b. Assume $(f_n)_n$ and $(g_n)_n$ are sequences from $B(X, \mathbb{R})$ that converge uniformly to f and g respectively. Show that $(f_ng_n)_n$ converges uniformly. **Hint:** See 4a and 6c. (6 pts.)

7c. We will now show that the set of sequences of functions $(f_n : X \to \mathbb{R})_n$ that converge uniformly is not closed under product. Take $X = \mathbb{R}$.

Let
$$f_n(x) = (1+n^{-1})x$$
 and let
 $g_n(x) = \begin{bmatrix} n^{-1} & \text{if } x = 0 \text{ or } x \notin Q \\ q+n^{-1} & \text{if } x = p/q \text{ where } p \in \mathbb{Z}, q \in \mathbb{N} \text{ and } (p,q) = 1 \end{bmatrix}$

Show that $(f_n)_n$ and $(g_n)_n$ converge uniformly on any closed and bounded interval, but that their product does not converge uniformly on any closed interval that contains more than one point. (8 pts.)

8. Assume X is also a metric space that each f_n is uniformly continuous² and that $(f_n)_n$ converges to f. Show that f is uniformly continuous. (5 pts.)

9 (Dini's Theorem). Assume *X* is a compact topological space and $Y = \mathbb{R}$. Assume that each f_n is continuous, that $f_n \ge f_{n+1}$ and that $(f_n)_n$ converges pointwise to a continuous function. Show that the convergence is uniform. (41 pts.)

² Recall that a function *f* is **continuous** if for all $a \in X$ and for all $\varepsilon > 0$ there is a $\delta_{\varepsilon, a} > 0$ such that if $d(x, a) < \delta$ then $d(f(x), f(a)) < \varepsilon$. The function *f* is called uniformly continuous if δ can be chosen independently of *a*, i.e. if for all $\varepsilon > 0$ there is a $\delta_{\varepsilon} > 0$ such that for all *x*, *a* if $d(x, a) < \delta$ then $d(f(x), f(a)) < \varepsilon$.