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I.1. Let (Xi)i be topological spaces. Show that if Πi Xi is Hausdorff (resp. compact) then so 

is each Xi. 

I.2. Show that a closed subset of a compact space is compact. 

I.3. Let f : X → Y be a continuous map between two topological spaces. Show that f(A) ⊆ 

f(A). Does the equality hold? 

I.4. Show that a continuous image of a compact set is compact. Is the preimage of a 

compact subset under a continuous map always compact? 

 

II. Let X be a topological space and A ⊆ X a subspace of A.  

II.1. Let K ⊆ A be a subset. Show that K is compact in A if and only if K is compact in X. 

II.2. Let K ⊆ X be a compact subset of X. Assume that A is closed in X. Show that K ∩ A 

is compact in A. 

II.3. Does II.2 still hold if A is not closed? 

 

III. Let A = {(x, y) : y < 0} and B = {(x, y) : y > 0}. Let τ be the set of the following 

subsets of �
2
: 

a) Open subsets U of B with the usual Euclidean topology on B, 

b) A ∪ U where U is as above, 

c) �
2
. 

III.1. Show that τ is a topology on �
2
. 

III.2. Find the closures of the following subsets in this topology: 

 III.2.a. {(0, 0)}. 

III.2.b. A. 

III.2.c. B. 

III.2.d. � × {0}. 

III.2.e. {0} × �. 

III.2.f. {(x, x) : x ∈ �}. 

III.2.g. {(x, y) : x
2
 + (y − 1)

2
 < 1}. 

III.2.h. {(x, y) : x
2
 + (y + 1)

2
 < 1}? 

III.2.i. {(x, y) : x
2
 + (y − 1)

2
 = 1}. 

III.2.k. {(x, y) : x
2
 + (y + 1)

2
 = 1}? 

III.3. Describe all the compact subsets of �
2
 with respect to τ. 



IV. Let X be a Hausdorff topological space.  

IV.1. Let K be a compact subset of X. Show that K is closed. Give a counterexample to 

this statement when X is not Hausdorff. 

IV.2. Let K be a compact subset of X and a ∈ X \ K. Show that there are disjoint open 

subsets U and V such that K ⊆ U and a ∈ V. 

IV.3. Let K1 and K2 be two disjoint compact subsets. Show that there are two disjoint 

open subsets U1 and U2 of X such that Ki ⊆ Ui. 

IV.4. Assume now X is a metric space with respect to the metric d. Let K1 and K2 be as 

above. Show that inf{d(x, y) : x ∈ K1 and y ∈ K2} > 0. 

 

V. 1. Show that a compact subset of a Hausdorff space is closed. 

V. 2. Show that a compact subset of a metric space is bounded. 

V. 3. Let A = {(x, y) : y < 0} and B = {(x, y) : y > −1}. Let σ be the topology generated by 

A and the open subsets U of B (with the usual Euclidean topology on B). Show that A is 

compact but A is not compact in this topology. 

 

VI. [Alexandroff One-Point Compactification]. Let X be a locally compact topological 

space. That means that for any x ∈ X there is compact neighborhood of x, i.e. for any x ∈ X, 

there is a compact subset K containing an open subset U such that x ∈ U ⊆ K. Let ∞ be an 

element not in X. On Y = X ∪ {∞} consider the topology generated by the open subsets of X 

and the complements in Y of compact subsets of X. 

VI.1. Show that Y is a compact space. 

VI.2. Show that the initial topology of X is the topology on X restricted from that of Y. 

Y is called the one-point compactification of X. 

VI.3. Find well-known topological spaces which are homeomorphic to the one-point 

compactifications of � and �
2
. 


