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As you can see from the points attached to each question, the questions are not difficult at 

all; they are in fact rather easy. The only difficulty lies in grasping the concepts. Once you 

understand what the concepts are saying, the rest will be easy. Please take your time and read 

the definitions carefully, find your own examples. 

Do not try to do all the questions in order to amass points because I may take away points 

for absurd answers. 

Write carefully, clearly and legibly. Make full sentences with at least one subject and a 

verb. Do not use symbols such as ⇒, ∀. 

 

Let X be a set. Let τ ⊆ ℘(X) be such that 

T1. ∅ ∈ τ and X ∈ τ. 

T2. If U, V ∈ τ then U ∩ V ∈ τ. (I.e. τ is closed under finite intersections). 

T3. If σ ⊆ τ, then ∪ σ ∈ τ. (I.e. τ is closed under arbitrary unions). 

Such a τ is called a topology on X. The elements of τ are called open subsets of X (for the 

topology τ). The pair (X, τ) is called a topological space. 

 

Part I. 

1. Let τ be the set of cofinite subsets of X together with ∅. Show that τ is a topology on 

X. This is called the cofinite topology on X. (4 pts.) 

Answer: By definition ∅ ∈ τ. Since X
c
 = ∅ and ∅ is finite, X is cofinite, so X ∈ τ. Thus 

T1 is satisfied.  

Now we check T2. Let U, V ∈ τ. If U or V is ∅, then U ∩ V = ∅ ∈ τ. Assume now that 

neither U nor V is ∅. Then U and V are cofinite, i.e. U
c
 and V

c
 are finite. Hence their 

union U
c
 ∪ V

c
 is finite. Since (U ∩ V)

c
 = U

c
 ∪ V

c
, this shows that U ∩ V is cofinite, i.e. U 

∩ V ∈ τ. 

Finally we check T3. Let σ ⊆ τ. If ∪σ = ∅ then ∪σ ∈ τ. Assume ∪σ ≠ ∅. Then σ must 

contain a nonempty subset A of τ. Then A is cofinite and A ⊆ ∪σ ⊆ X. Thus ∪σ is also 

cofinite (even more cofinite than A!) 

 

2. Show that the intersection of any nonempty set of topologies is a topology on X. (3 

pts.) 

Proof: Let Σ be a set of topologies on X. Let τ = ∩Σ = ∩σ∈Σ σ. Since each element σ of Σ 

is a topology, they all contain ∅ and X. Thus ∅ and X are elements of  ∩σ∈Σ σ = τ 

Now we check T2. Let U, V ∈ τ. Thus U, V ∈ σ for all σ ∈ Σ. Since each σ ∈ Σ is a 

topology, this implies that U ∩ V ∈ σ. Hence U ∩ V ∈ ∩σ∈Σ σ  = τ. 

Finally T3. Let α ⊆ τ. Then α ⊆ σ for all σ ∈ Σ. Since each element σ of Σ is a topology, 

∪α ∈ σ. Thus ∪α ∈ ∩σ∈Σ σ  = τ. 

 

3. Find the smallest and the largest topologies (for the inclusion) for X. The smallest 

topology on X is called the coarsest topology on X and the largest topology is called 

the discrete topology on X. (4 pts.) 

Answer: Each topology must contain ∅ and X. On the other hand it is easy to check that 

τ0 = {∅, X} is a topology. Hence τ0 is the smallest topology on X. 

Certainly τ = ℘(X) is a topology on X. Thus it is the largest topology on X. 

 



4. Given any σ ⊆ ℘(X) show that there is a smallest topology 〈σ〉 that contains σ (as a 

subset). (10 pts.) 

Proof: By #2, the intersection of toplogies is a topology. And by #3, ℘(X) is a topology 

on X that contains σ. Thus the set of topologies on X that contains σ is a nonempty set. 

Take the intersection of all topologies on X that contain σ. By #2, this is a topology. It 

certainly contains σ as a subset. Thus it can only be the smallest topology that contains σ. 

We set 〈σ〉 = ∩{τ ⊆ ℘(X) : σ ⊆ τ and τ is a topology}. 

 

5. Show that if σ ⊆ ℘(X) is closed under finite intersections then 

〈σ〉 = {∪α : α ⊆ σ} ∪ {X}. 

(10 pts.) 

Proof: Let ϕ = {∪α : α ⊆ σ} ∪ {X}. 

Since σ ⊆ 〈σ〉, it is clear that for any α ⊆ σ, α is also a subset of 〈σ〉. Since 〈σ〉 is a 

topology, this implies by T3 that ∪α ∈ 〈σ〉. This shows that {∪α : α ⊆ σ} ⊆ 〈σ〉 and so ϕ 

⊆ 〈σ〉 (because, 〈ϕ〉, being a topology, contains X). 

On the other hand, for any A ∈ σ, if we take α = {A}, we see that A = ∪α ∈ {∪α : α ⊆ 

σ}. Hence σ ⊆ ϕ. 

Thus σ ⊆ ϕ ⊆ 〈σ〉. 

Accordingly, if we can show that ϕ is a topology then we would necessarily have ϕ = 〈σ〉 

because 〈σ〉 is by definition the smallest topology that contains σ. So we should check T1, 

T2 and T3 hold for ϕ. 

Taking α = ∅, we see that ∅ = ∪α ∈ {∪α : α ⊆ σ} ⊆ ϕ. By definition X ∈ ϕ. This shows 

that T1 holds for ϕ. 

Let us check T2. Let A, B ∈ ϕ. If one of A or B is X, then A ∩ B is either A or B, so that A 

∩ B ∈ ϕ. If neither A or B is X, then A = ∪α and B = ∪β for some α, β ⊆ σ. Thus A ∩ B = 

(∪α) ∩ (∪β) = ∪γ where γ = {a ∩ b : a ∈ α, b ∈ β}. But since α and β are subsets of σ 

and σ is closed under finite intersections, for each a ∈ α and b ∈ β, we have a ∩ b ∈ σ. 

Thus γ ⊆ σ, proving that A ∩ B ⊆ (∪α) ∩ (∪β) = ∪γ ∈ {∪α : α ⊆ σ} ⊆ ϕ. 

Finally we check T3. Let δ ⊆ ϕ. If X ∈ δ, then ∪δ = X ∈ ϕ. Thus we may assume that X ∉ 

δ. Therefore δ ⊆ {∪α : α ⊆ σ}. Then δ = ∪β where β = ∪{α ⊆ σ : ∪α ∈ δ}. Since β is a 

subset of σ, this shows that δ = ∪β ∈ {∪α : α ⊆ σ} ⊆ ϕ. 

 

6. Given an arbitrary σ ⊆ ℘(X), can you describe the elements of 〈σ〉 by using the 

elements of σ (as above)? (10 pts.) 

Answer: Let σ1 = {A1 ∩ ... ∩ An : n ∈ � and Ai ∈ σ}. It is clear that σ ⊆ σ1, so that 〈σ〉 ⊆ 

〈σ1〉. It is also clear that σ1 is closed under finite intersections, so that, by #6, 

〈σ1〉 = {∪α : α ⊆ σ1} ∪ {X}. 

Thus 〈σ〉 ⊆ 〈σ1〉 = {∪α : α ⊆ σ1} ∪ {X}. 

We claim that 〈σ1〉 ⊆ 〈σ〉. For this, it is of course enough to show that σ1 ⊆ 〈σ〉. Let us 

take an arbitrary element A1 ∩ ... ∩ An of σ1. Here each Ai is assumed to be in σ. Thus 

each Ai is in 〈σ〉. Since 〈σ〉 is a topology, 〈σ〉 is closed under finite intersections, implying 

that A1 ∩ ... ∩ An ∈ 〈σ〉.  
 

Part II. Let (X, τ) and (Y, σ) be two topological spaces. A map f : X → Y is called 

continuous if for any open subset V of Y, f
−1

(V) is an open subset of X. 

 



7. Let X be a set. Find a topology on X such that for any topological space (Y, σ) and any 

map f : X → Y, the map f is continuous. (6 pts.) 

Answer: On X take the discrete topology. Thus any subset of X (for this topology) is 

open. Therefore for any function f : X → Y and for any open subset V of Y, f
−1

(V) is an 

open subset of X. 

 

8. Let Y be a set. Find a topology on Y such that for any topological space (X, τ) and any 

map f : X → Y, the map f is continuous. (6 pts.) 

Answer: On Y take the coarsest topology. Thus Y has only two open subsets: ∅ and Y 

itself. Thus for V we have only two choices: If V = ∅, then f
−1

(V) = ∅ is open in X 

(whatever the topology of X is) and if V = Y, then f
−1

(V) = X is open in X. 

 

9. Show that a constant map between topological spaces is always continuous. (4 pts.) 

Proof: Let X and Y be two topological spaces and f : X → Y be a constant map. Let b ∈ Y 

be such that f(x) = b for all x ∈ X. Let V be an open subset of Y. If b ∉ V, then f
−1

(V) = ∅ 

and is open in X. If b ∈ V, then f
−1

(V) = X and is open in X. 

 

10. Show that the identity map is a continuous function of a fixed topological space. (2 

pts.) 

Proof: Let (X, τ) be a topological space. For V, an open subset of X, Id
−1

(V) = V. Thus 

Id
−1

(V) is open for any open subset V of X. This means that Id is continuous. (Note that 

this would be false if the domain X and the range X have different topologies). 

 

11. Show that the composition of continuous maps is continuous. (4 pts.) 

Proof: Let X, Y and Z be three topological spaces and f : X → Y and g : Y → Z be two 

continuous maps. Let W ⊆ Z be an open subset. Then (g ◦ f)
−1

(W) = f
−1

(g
−1

(W)). Since g is 

continuous, g
−1

(W) is an open subset of Y. Since f is continuous, f
−1

(g
−1

(W)) is an open 

subset of X. Hence (g ◦ f )
−1

(W) is open in X, proving that g ◦ f is continuous. 

 

12. Let (Y, σ) be a topological space, X a set and f : X → Y be a map. Show that there is a 

smallest topology on X that makes f continuous. (10 pts.) 

Proof: Let τ be the topology on Y. Let σ be the topology that we want to find on X. (We 

still don’t know that σ exists). Clearly, for f to be continuous, for any V ∈ τ, we must have 

f
−1

(V) ∈ σ. Thus for f to be continuous, σ must contain f
−1

(V) for all V ∈ τ, i.e. we must 

have {f
−1

(V) : V ∈ τ} ⊆ σ. 

But it is easy to check that {f
−1

(V) : V ∈ τ} is itself a topology. Thus σ = {f
−1

(V) : V ∈ τ} 

is the smallest topology that maks f continuous. 

 

13. Let (Y, σ) be a topological space, X a subset of Y and i : X → Y the inclusion map. 

Find the smallest topology on X that makes i continuous. This topology on X is called 

the restricted topology on X. (6 pts.) 

Proof: By above, this topology must be {i
−1

(V) : V ∈ σ}. But i
−1

(V) = V ∩ X. Thus the 

open subsets of X must all be of the form V ∩ X for some open subset V of Y. 

 

14. Let (X, τ) and (Y, σ) be two topological spaces. Let π1 and π2 be the two projection 

maps from X × Y onto X and Y respectively. Thus π1(x, y) = x and π2(x, y) = y. Find the 

smallest topology on X × Y that makes π1 and π2 continuous. (10 pts.) This topology on 



X × Y is called the product topology. Show that the projections of any open subset of X 

× Y for the product topology are open. (5 pts.) 

Proof: The smallest topology on X × Y must contain π1
−1

(U) = U × Y and π2
−1

(V) = X × V 

for any open subsets U and V of X and Y respectively. Thus the smallest topology must 

also contain π1
−1

(U) ∩ π2
−1

(V) = (U × Y) ∩ (X × V) = U × V for any open subsets U and V 

of X and Y respectively. Such a set U × V is called an open rectangle. Unfortunately, the 

set {U × V : U ∈ τ, V ∈ σ} of open rectangles is not a topology, because although it is 

closed under finite intersetions, this set is not closed under arbitrary unions. As in #5, we 

must take arbitrary unions of open rectangles. Thus the open subsets of the smallest 

topology that makes both projection maps are arbitrary unions of open rectangles. 

The second part is easy. 

 

15. Let (Xi, τi)i be a family of topological spaces. Find the least topology on Πi Xi that 

makes all the projections πi continuous. (12 pts.) 

Proof: As above... Let I be the index set. For i(1), ..., i(n) ∈ I and for open subsets Ui(1) ⊆ 

Xi(1), ..., Ui(n) ⊆ Xi(n), let 

V(i(1), ..., i(n), Ui(1), ..., Ui(n)) = {x ∈ Πi Xi : xi(1) ∈ Ui(1), ..., xi(n) ∈ Ui(n)}. 

The sets of this form are closed under finite intersections, but are not closed under unions. 

Close them under taking the unions. Call an open subset of Πi Xi open if it is an arbitrary 

union of sets of the form V(i(1), ..., i(n), Ui(1), ..., Ui(n)) as above. As in #5, this is a 

topology and it is certainly the lest topology that makes all the projection maps 

continuous. 

 

Part III. In this part a set X and a topology τ on X are fixed. We will say that X is a 

topological space. 

 

16. Let A be a subset of X. Show that there is a largest open subset of A. We let A° denote 

this largest subset of A. (5 pts.) 

Proof: There is at least one open subset in A, namely ∅. Now take the union of all the 

open subsets of A. Being a union of open sets, this is an open set. Since it is a subset of A, 

it must be the largest open subset of A. Thus A° = ∪{U : U open and U ⊆ A}. Note that 

any open subset of A is a subset of A°.
 

 

17. Assume τ is the cofinite topology, show that either A° = A or A = ∅. (4 pts.) 

Proof: If U is cofinite, then U is open and so U = U°. Otherwise, U cannot have a cofinite 

subset, thus the only open subset of U is ∅ and so A° = ∅. 

 

18. Show that A = A° if and only if A is open. (2 pts.) 

Proof: Since A° is open, if A = A°, A is clearly open. If A is open, A is of course the largest 

open subset of itself, so that A = A°. 

 

19. Show that A°° = A°. (2 pts.) 

Proof: Since A° is open, A°° = A° by above. 

 

20. Show that if A ⊆ B then A° ⊆ B°. (4 pts.) 

Proof: We have A° ⊆ A ⊆ B. Thus A° ⊆ B. Since A° is open subset of B and since B° is 

the largest open subset of B, we must have A° ⊆ B°. 

 



21. Show that A° ∩ B° = (A ∩ B)°. (4 pts.) 

Proof: Since A° ∩ B° is open and since A° ∩ B° ⊆ A ∩ B, we must have A° ∩ B° ⊆ (A ∩ 

B)°. Now the reverse inclusion: Since (A ∩ B)° ⊆ A ∩ B ⊆ A, (A ∩ B)° is an open subset 

of A. Therefore (A ∩ B)° ⊆ A°. Similarly (A ∩ B)° ⊆ B°. Thus (A ∩ B)° ⊆ A° ∩ B°. 

 

22. Show that A° ∪ B° ⊆ (A ∪ B)°. (2 pts.) Show that the equality may not always hold. (5 

pts.) 

Proof: Since A ⊆ A ∪ B, by #20, A° ⊆ (A ∪ B)°. Similarly B° ⊆ (A ∪ B)°. Thus A° ∪ B° 

⊆ (A ∪ B)°. To show that the inequality may not hold, let us take X to be an infinite set, 

e.g. X = �, and the cofinite topology on it. Take A be an infinite subset of X which is not 

cofinite, e.g. A = 2�. Let B = X \ A. Then A° = B° = ∅ but (A ∪ B)° = X° = X. 

 

23. Let Y be another topological space and f : X → Y be a continuous map. Let B ⊆ Y. 

Find the set theoretic relationship between f
−1

(B°) and f
−1

(B)°. (6 pts.) 

Proof: Since B° is open and f continuous, f
−1

(B°) is open as well. Since f
−1

(B°) ⊆ f
−1

(B), 

this implies that f
−1

(B°) ⊆ f
−1

(B)°. To see that the equality may not hold, take X = Y = � 

with the cofinite topology and f to be the constant 0-map. By #9 f is continuous. Take B = 

{0}. Then B° = ∅, f
−1

(B) = �. 

 

Part IV. In this part a topological space X is fixed. A subset F of X is called closed if its 

complement is open. 

 

24. Show that ∅ and X are closed. (1 pts.) 

Proof: Since ∅c
 = X \ ∅ = X and X is open ∅ is closed. Similarly X is closed. 

 

25. Show that the union of two closed subsets of X is closed. (2 pts.) 

Proof: Let C and D be two closed sets. Then C
c
 and D

c
 are open. Therefore their 

intersection C
c
 ∩ D

c
 is open as well. Since (C ∪ D)

c
 = C

c
 ∩ D

c
, this implies that C ∪ D is 

closed. 

 

26. Show that the intersection of any set of closed subsets of X is closed. (3 pts.) 

Proof: Let ℑ be a set of closed subsets of X. Then (∩�)
c
 = (∩C ∈ � C)

c
 = ∪C∈� C

c
. But C

c
 

is open for each C ∈ �. Thus ∪C∈� C
c
 is open. Therefore ∩� is closed. 

 

27. Let A be a subset of X. Show that there is a smallest closed superset of A. We let A 

denote this smallest closed subset that contains A. (4 pts.) 

Proof: X is a closed superset of A. Let A be the intersection of all closed supersets of A. 

Clearly A ⊆ A. By above A is closed. Clearly A is a subset of any closed superset of A. 

Thus A is the smallest closed superset of A. 

 

28. Show that A = A if and only if A is closed. (2 pts.) 

Proof: Since A is closed, if A = A, A is closed. Conversely, if A is closed, then A is of 

course the smallest closed superset of itself. Thus A = A. 

 

29. Show that A = A. (2 pts.) 

Proof: Since A is closed, by the above result, A = A. 

 



30. Show that if A ⊆ B then A ⊆ B. (3 pts.) 

Proof: Since A ⊆ B ⊆ B, we have A ⊆ B. Thus B is a closed superset of A. Thus A ⊆ B. 

 

31. Show that A ∪ B = A ∪ B. (4 pts.) 

Proof: A ∪ B is a closed superset of A ∪ B. Thus A ∪ B ⊆ A ∪ B. On the other hand, by 

#30, A ⊆ A ∪ B. Similarly B ⊆ A ∪ B. Thus A ∪ B ⊆ A ∪ B. 

 

32. Show that A ∩ B ⊆ A ∩ B . (2 pts.) Show that the equality may not always hold. (4 

pts.) 

Proof: By #30, A ∩ B ⊆ A. Similarly A ∩ B ⊆ B. Thus A ∩ B ⊆ A ∩ B. In the cofinite 

topology, the closed subsets are only the finite subsets and the space X itself. Take X = �, 

A = 2�, B = 2� + 1. Then A = B = � and A ∩ B = ∅. 

 

33. Let Y be another topological space. Let f : X → Y be a map. Show that f is continuous 

if and only if the inverse image of any closed subset of Y is closed in X. (5 pts.) 

Proof: Assume f is continuous. Let F ⊆ Y be a closed subset. We have f
−1

(F)
c
 = f

−1
(F

c
) 

and is open in X because F
c
 is open in Y and f is continuous. 

Conversely, assume that the inverse image of any closed subset of Y is closed in X. Let V 

be open in Y. Then f
−1

(V) = f
−1

(V
c
)
c
. Since V

c
 is closed, f

−1
(V

c
) is closed as well. Thus its 

complement f
−1

(V
c
)
c
 is open. Therefore f

−1
(V), which is equal to f

−1
(V

c
)
c
 is open as well. 

 

34. Let Y be another topological space. Let f : X → Y be a continuous map. Let B ⊆ Y. 

Find the set theoretic relationship between f
−1

(B) and f
−1

(B). (4 pts.) 

Proof: By above f
−1

(B) is closed. Certainly f
−1

(B) ⊆ f
−1

(B). Thus f
−1

(B) ⊆ f
−1

(B). The 

equality may not hold: Take X = Y = � with the cofinite topology. Take f to be the 

constant 0-map. f is continuous by #9. Let B = � \ {1}. Then B = �, f
−1

(B) = � but f
−1

(B) 

= ∅.  

 

Part IV. A topological space X is called connected if it is not the union of two disjoint 

nonempty open subsets. A subset A of a topological space X is called connected if A is 

connected for the restricted topology. 

 

35. Let A ⊆ X be a connected subspace of X. Show that A is connected. (15 pts.) 

Proof: Assume A is not connected. Thus there are two disjoint and nonempty open subsets 

C and D (in the restricted topology) of A such that A = C ∪ D. Then, by the definition of 

restriction topology, C = A ∩ U and D = A ∩ V for some open subsets U and V of X. Now 

A = A ∩ A = A ∩ (C ∪ D) = (A ∩ C) ∪ (A ∩ D) = (A ∩ A ∩ U) ∪ (A ∩ A ∩ V) = (A ∩ U) 

∪ (A ∩ V). Since A is connected and A ∩ U and A ∩ V are disjoint open subsets of A, one 

of them must be empty, without loss of generality say A ∩ U = ∅. Then A ⊆ U
c
 and U

c
 is 

closed. Hence A ⊆ U
c
 and C = A ∩ U = ∅, a contradiction. 

 

36. Show that the relation “x ≡ y iff x and y belong to a connected subset of X” is an 

equivalence relation on X. (15 pts.) 

Proof: Let x ∈ X. Since the set {x} is singleton, it must be connected. Thus x ≡ x. 

Assume x ≡ y. Thus x and y belong to the same connected subset A. Then y and x also 

belong to the connected subset A. Hence y ≡ x. 



Assume now that x ≡ y and y ≡ z. Let A and B be two connected sets such that x, y ∈ A and 

y, z ∈ B. Thus x, z ∈ A ∪ B. It remains to show that A ∪ B is connected. Note that y ∈ A ∩ 

B, so that A ∩ B ≠ ∅. We will show the following: 

 

Lemma. If A and B are connected and A ∩ B ≠ ∅, then A ∪ B is connected. 

Proof: Let C and D be two disjoint and nonempty open subsets (in the restricted topology) 

of A ∪ B such that A ∪ B = C ∪ D. Thus A = (A ∩ C) ∩ (A ∩ D). Note that A ∩ C and A 

∩ D are disjoint open subsets (in the restricted topology) of A. Hence either A ∩ C or A ∩ 

D is empty. Without loss of generality we may assume that A ∩ C = ∅. Thus A ⊆ D. 

Similarly, B = (B ∩ C) ∩ (B ∩ D) and either B ∩ C or B ∩ D is empty. If B ∩ C = ∅ then 

B ⊆ D and so A ∪ B ⊆ D and C = ∅, a contradiction. Thus B ∩ D = ∅; but then B ⊆ C 

and so A ∩ B ⊆ C ∩ D = ∅, a contradiction again. This proves the lemma. 

 

37. Show that each equivalence class for the above relation is a maximal connected subset 

of X (20 pts.) and is closed (5 pts.). Each equivalence class is called a connected 

component of X. Show that each connected component is also open if there are finitely 

many of them. (6 pts.) Give a counterexample when there are infinitely many 

connected components. (10 pts.) 

Proof: We need a lemma similar to the one above: 

 

Lemma. Let (Ai)i∈I be a family of connected subsets of X. Assume that for i ≠ j in I, Ai ∩ 

Aj ≠ ∅. Then ∪i∈I Ai is connected. 

Proof: Let C and D be two disjoint and nonempty open subsets (in the restricted topology) 

of ∪i∈I Ai such that ∪i∈I Ai = C ∪ D. Thus Ai = (Ai ∩ C) ∩ (Ai ∩ D). Note that Ai ∩ C and 

Ai ∩ D are disjoint open subsets (in the restricted topology) of Ai. Hence either Ai ∩ C or 

Ai ∩ D is empty. Without loss of generality we may assume that Ai ∩ C = ∅. Thus Ai ⊆ D. 

Now let j ≠ i. Similarly, we have Aj = (Aj ∩ C) ∩ (Aj ∩ D) and either Aj ∩ C or Aj ∩ D is 

empty. If Aj ∩ D = ∅; but then Aj ⊆ C and so Ai ∩ Aj ⊆ C ∩ D = ∅, a contradiction. Thus 

Aj ∩ C = ∅ and Aj ⊆ D all j ∈ I. This shows that ∪i∈I Ai ⊆ D and so C = ∅, a 

contradiction. This proves the lemma. 

 

Continued. For each y ∈ [x], choose a connected set Ax that contains x and y. By the 

lemma above the set ∪y∈[x] Ax is connected and it certainly contains [x]. If C is connected 

and contains ∪y∈[x] Ax then for any element c ∈ C, c and x would be in the same connected 

set C, so c ≡ x and c ∈ [x]. This shows that ∪y∈[x] Ax = C = [x]. Thus [x] is a maximal 

connected subset of X. 

By #35, [x] is connected. Since [x] is maximal, this shows that [x] = [x] and so [x] is 

closed. 

It is false that each [x] is open: Take X = � × �. Let the open subsets of X be the 

complements of finitely many vertical lines of X. This really efines a topology. In this 

topology, for each x ∈ X, [x] is the vertical line passing through x and is not open. 

Note that in the above counterexample, there are infinitely many equivalence classes (i.e. 

connected components). But the question is true if X has finitely many connected 

components: 

Clearly, X = ∪x∈X [x] and [x]
c
 = ∪{[y] : y ∈ X and [y] ≠ [x]} and this set is closed if the 

union is taken over a fnite set. 

 



38. Show that the product of two connected spaces is connected for the product topology. 

(20 pts.) 

Proof: Let X and Y be two connected topological spaces. Assume X × Y = U ∪ V for two 

open nonempty disjoint subsets of X × Y. I am too tired...  

 


