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1. Let X be a metric space. Show that for any x ∈ X there is a countable set of open 

subsets Vn(x) (n ∈ �) containing x such that for any open subset U containing x there is an n 

∈ � such that Vn ⊆ U. 

Proof: For a rational number q ∈ �
>0

, let Vq(x) = B(x, q). 

 

2. Let I be an uncountable (index) set. Let X be a topological space whose topology is not 

the coarsest topology. Show that the product (Tychonoff) topology on ΠI X is not metrisable. 

Proof: We will show that for some x ∈ ΠI X there is no countable open subsets (Vn(x))n as 

in the first question. Let a ∈ X. Define x ∈ ΠI X to be the element whose coordinate xi is a. 

Let V ≠ X be an open subset of X containing a. For each i ∈ I define Ui = {y ∈ ΠI X : yi ∈ V}. 

Then each Ui is an open subset containing x. For any countable family (Vn(x))n of open 

subsets containing x, the set {i ∈ I : pri(Vn(x)) ≠ X} being finite for all n ∈ �, the set {i ∈ I : 

pri(Vn(x)) ≠ X some n ∈ �} will be countable. Thus its complement J = {i ∈ I : pri(Vn(x)) = X 

all n ∈ �} will be uncountable. If Vn(x) ⊆ Ui, then, pri(Vn(x)) ⊆ pri(Ui) = V ≠ X and so i ∉ J.. 

Thus not all the Ui’s can contain one of the Vn(x)’s. 

 

3. Let X be a set. Let F be the set of real (or complex) valued functions from X. For f ∈ 

Func(X, �) define ||f|| = sup{min{|f(x)|, 1} : x ∈ X} and d(f, g) = ||f − g||. Show that (F, d) is a 

metric space. 

Convergence for this metric is called uniform convergence. 

Proof: Note first that sup exists because the numbers are bounded by 1. 

All the properties of the metric are clear except may be for the triangular inequality. Let f, 

g and h be three functions. We have to show that d(f, g) ≤ d(f, h) + d(h, g), i.e. that ||f − g|| ≤ ||f 

− h|| + ||h − g||. Replacing f − h by f and h − g by g, we are brought to the inequality ||f + g|| ≤ 

||f || + ||g||. If one of ||f || or ||g|| is 1, the inequality is clear. Assume ||f || < 1 and  ||g|| < 1. Then 

|f(x)| < 1 and |g(x)| < 1 for all x ∈ X and ||f|| = sup{|f(x)| : x ∈ X} and  ||g|| = sup{|g(x)| : x ∈ X}. 

Hence, ||f + g|| = sup{min{|f(x)+g(x)|, 1} : x ∈ X} ≤ sup{min{|f(x)|+|g(x)|, 1} : x ∈ X} ≤ 

sup{|f(x)|+|g(x)| : x ∈ X} ≤ sup{|f(x)| : x ∈ X} + sup{|g(x)| : x ∈ X} = ||f || + ||g||. 
 

4. Let (fn)n be a sequence of functions from a set X into � (or �). Suppose that there is a 

sequence (Mn)n of real numbers such that a) Σn Mn converges and b) |fn(x)| ≤ Mn for all x ∈ X 

and n ∈ �. Show that Σn fn converges uniformly. 

Proof: It is enough to show that the series (Σi ≤ n fi)n is Cauchy in the sup metric ||  ||. Let ε 

> 0. We have to find a natural number N such that for n ≥ m > N, ||Σi ≤ n fi − Σi ≤ m fi || < ε. 

Note first that ||fn|| ≤ Mn. 

Since Σn Mn converges, the sequence (Σi ≤ n Mi)n is Cauchy. Hence there is a natural 

number N such that for all n ≥ m > N, ||Σm < i  ≤ n Mi || = ||Σi ≤ n Mi − Σi ≤ m Mi || < ε. Thus for all 

n ≥ m > N, ||Σi ≤ n fi − Σi ≤ m fi || = ||Σm < i  ≤ n fi || ≤ Σm < i  ≤ n ||fi || ≤ ||Σm < i  ≤ n Mi || < ε. 

 



5. Show that the limit of a uniformly convergent sequence of real (or complex) valued 

continuous functions from a metric space is continuous. 

Proof: Let (fn)n be a uniformly sequence of continuous functions from a metric space (X, 

d) into � (or �). Let f be the uniform (hence also the pointwise) limit of the sequence. Let a ∈ 

A. Let ε > 0. We have to find δ > 0 such that if d(a, x) < δ then |f(x) − f(a)| < ε. 

Since limn→∞ fn = f, there is an N such that for all n > N, ||fn − f|| < ε/3. It follows that for all 

n > N and x ∈ X, |fn(x) − f(x)| < ε/3. 

Let n = N + 1. Since fn is continuous at a there is a δ > 0 such that |fn(x) − fn(a)| < ε/3 

whenever d(x, a) < δ. 

Now, for any x ∈ X for which d(x, a) < δ, |f(x) − f(a)| ≤ |f(x) − fn(x)| + |fn(x) − fn(a)| + |fn(a) 

− f(a)| < ε/3 + ε/3 + ε/3 = ε. 

 

6. Show that a continuous function from a compact space into a metric space is uniformly 

continuous. 

Proof: Recall that a function f : X → Y (between metric spaces X and Y) is uniformly 

continuous if for all ε > 0 there is a δ > 0 such that d(f(x), f(y)) < ε for all x, y ∈ X for which 

d(x, y) < δ. Suppose X is compact and f : X → Y is continuous. Let ε > 0. Since f is continuous, 

for each x ∈ X there is a δ(x) > 0 such that d(f(x), f(y)) < ε/2 for all y ∈ B(x, δ(x)). Since X = 

∪x∈X B(x, δ(x)/2) and X is compact, there are x1, ..., xn ∈ X such that X = B(x1, δ(x1)/2) ∪ ... ∪ 

B(xn, δ(xn)/2). Let δ = min{δ(x1), ..., δ(xn)}/2. Let x, y ∈ X be such that d(x, y) < δ. Let i = 1,..., 

n be such that x ∈ B(xi, δ(xi)/2). Then d(y, xi) ≤ d(y, x) + d(x, xi) < δ + δ(xi)/2 ≤ δ(xi)/2 + δ(xi)/2 

= δ(xi) and so d(f(y), f(xi)) < ε/2. Now  d(f(x), f(y)) ≤ d(f(x), f(xi)) + d(f(xi), f(y)) < ε/2 + ε/2 = ε. 

 

Given a sequence (an)n recall that limsup an is defined as limn→∞ sup{am : m > n}.  

 

7. Let Σn anx
n
 be a power series. Let R = 1/limsup |an|

1/n
. Show that Σn anx

n
 converges 

absolutely for |x| < R and diverges for |x| > R. (Recall that if bn ≥ 0 for all n then limsup bn is 

defined as the limit of the nonincreasing sequence sup{bi : i > n} ∈ �
≥0 ∪ {∞} and 1/∞ and 

1/0 are defined to be 0 and ∞ respectively. R is called the radius of convergence of the series 

Σn anx
n
). 

Proof: Let r = limsup |an|
1/n

 < 1. Let ε = (1 − r)/2 and ρ = r + ε. Then ρ = r + ε = r + 

(1−r)/2 = (1 + r)/2 < 1. Since ε > 0, the nonincreasing sequence  sup{|an|
1/n

 : i > n} < r + ε 

after a while. i.e. |an|
1/n

 ∈ [r, r + ε)  

 

8. Let 0 ≤ S < R. Show that Σn anx
n
 converges uniformly on {x : |x| ≤ S}. 

 

9. Show that the radius of convergence of the power series Σn≥0 anx
n
 and Σn>0 nanx

n−1
 are 

the same. 

 

10. Let Σn anx
n
 be a power series and R its radius of convergence. Show that the series is 

differentiable at any x such that |x| < R. 

 


