Topology Final Exam Spring 2005 Ali Nesin

1. Let X be a metric space. Show that for any $x \in X$ there is a countable set of open subsets $V_n(x)$ ($n \in \mathbb{N}$) containing x such that for any open subset U containing x there is an $n \in \mathbb{N}$ such that $V_n \subseteq U$.

Proof: For a rational number $q \in \mathbb{Q}^{>0}$, let $V_q(x) = B(x, q)$.

2. Let I be an uncountable (index) set. Let X be a topological space whose topology is not the coarsest topology. Show that the product (Tychonoff) topology on $\Pi_I X$ is not metrisable.

Proof: We will show that for some $x \in \prod_I X$ there is no countable open subsets $(V_n(x))_n$ as in the first question. Let $a \in X$. Define $x \in \prod_I X$ to be the element whose coordinate x_i is a. Let $V \neq X$ be an open subset of X containing a. For each $i \in I$ define $U_i = \{y \in \prod_I X : y_i \in V\}$. Then each U_i is an open subset containing x. For any countable family $(V_n(x))_n$ of open subsets containing x, the set $\{i \in I : \operatorname{pr}_i(V_n(x)) \neq X\}$ being finite for all $n \in \mathbb{N}$, the set $\{i \in I :$ $\operatorname{pr}_i(V_n(x)) \neq X$ some $n \in \mathbb{N}\}$ will be countable. Thus its complement $J = \{i \in I : \operatorname{pr}_i(V_n(x)) = X$ all $n \in \mathbb{N}\}$ will be uncountable. If $V_n(x) \subseteq U_i$, then, $\operatorname{pr}_i(V_n(x)) \subseteq \operatorname{pr}_i(U_i) = V \neq X$ and so $i \notin J$. Thus not all the U_i 's can contain one of the $V_n(x)$'s.

3. Let X be a set. Let F be the set of real (or complex) valued functions from X. For $f \in Func(X, \mathbb{R})$ define $||f|| = \sup\{\min\{|f(x)|, 1\} : x \in X\}$ and d(f, g) = ||f - g||. Show that (F, d) is a metric space.

Convergence for this metric is called uniform convergence.

Proof: Note first that sup exists because the numbers are bounded by 1.

All the properties of the metric are clear except may be for the triangular inequality. Let *f*, *g* and *h* be three functions. We have to show that $d(f, g) \le d(f, h) + d(h, g)$, i.e. that $||f - g|| \le ||f - h|| + ||h - g||$. Replacing f - h by *f* and h - g by *g*, we are brought to the inequality $||f + g|| \le ||f|| + ||g||$. If one of ||f|| or ||g|| is 1, the inequality is clear. Assume ||f|| < 1 and ||g|| < 1. Then |f(x)| < 1 and |g(x)| < 1 for all $x \in X$ and $||f|| = \sup\{|f(x)| : x \in X\}$ and $||g|| = \sup\{|g(x)| : x \in X\}$. Hence, $||f + g|| = \sup\{\min\{|f(x)+g(x)|, 1\} : x \in X\} \le \sup\{\min\{|f(x)|+|g(x)|, 1\} : x \in X\} \le \sup\{|f(x)| : x \in X\} = ||f|| + ||g||$.

4. Let $(f_n)_n$ be a sequence of functions from a set X into \mathbb{R} (or \mathbb{C}). Suppose that there is a sequence $(M_n)_n$ of real numbers such that **a**) $\Sigma_n M_n$ converges and **b**) $|f_n(x)| \leq M_n$ for all $x \in X$ and $n \in \mathbb{N}$. Show that $\Sigma_n f_n$ converges uniformly.

Proof: It is enough to show that the series $(\sum_{i \le n} f_i)_n$ is Cauchy in the sup metric || ||. Let ε > 0. We have to find a natural number N such that for $n \ge m > N$, $||\sum_{i \le n} f_i - \sum_{i \le m} f_i || < \varepsilon$.

Note first that $||f_n|| \le M_n$.

Since $\sum_{n} M_{n}$ converges, the sequence $(\sum_{i \leq n} M_{i})_{n}$ is Cauchy. Hence there is a natural number N such that for all $n \geq m > N$, $\|\sum_{m < i \leq n} M_{i}\| = \|\sum_{i \leq n} M_{i} - \sum_{i \leq m} M_{i}\| < \varepsilon$. Thus for all $n \geq m > N$, $\|\sum_{i \leq n} f_{i} - \sum_{i \leq m} f_{i}\| = \|\sum_{m < i \leq n} f_{i}\| \le \sum_{m < i \leq n} M_{i}\| \le \sum_{m < i \leq n} M_{i}\| \le \varepsilon$.

5. Show that the limit of a uniformly convergent sequence of real (or complex) valued continuous functions from a metric space is continuous.

Proof: Let $(f_n)_n$ be a uniformly sequence of continuous functions from a metric space (*X*, *d*) into \mathbb{R} (or \mathbb{C}). Let *f* be the uniform (hence also the pointwise) limit of the sequence. Let $a \in A$. Let $\varepsilon > 0$. We have to find $\delta > 0$ such that if $d(a, x) < \delta$ then $|f(x) - f(a)| < \varepsilon$.

Since $\lim_{n\to\infty} f_n = f$, there is an *N* such that for all n > N, $||f_n - f|| < \varepsilon/3$. It follows that for all n > N and $x \in X$, $|f_n(x) - f(x)| < \varepsilon/3$.

Let n = N + 1. Since f_n is continuous at *a* there is a $\delta > 0$ such that $|f_n(x) - f_n(a)| < \varepsilon/3$ whenever $d(x, a) < \delta$.

Now, for any $x \in X$ for which $d(x, a) < \delta$, $|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)| < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon$.

6. Show that a continuous function from a compact space into a metric space is uniformly continuous.

Proof: Recall that a function $f : X \to Y$ (between metric spaces *X* and *Y*) is uniformly continuous if for all $\varepsilon > 0$ there is a $\delta > 0$ such that $d(f(x), f(y)) < \varepsilon$ for all $x, y \in X$ for which $d(x, y) < \delta$. Suppose *X* is compact and $f : X \to Y$ is continuous. Let $\varepsilon > 0$. Since *f* is continuous, for each $x \in X$ there is a $\delta(x) > 0$ such that $d(f(x), f(y)) < \varepsilon/2$ for all $y \in B(x, \delta(x))$. Since $X = \bigcup_{x \in X} B(x, \delta(x)/2)$ and *X* is compact, there are $x_1, ..., x_n \in X$ such that $X = B(x_1, \delta(x_1)/2) \cup ... \cup B(x_n, \delta(x_n)/2)$. Let $\delta = \min\{\delta(x_1), ..., \delta(x_n)\}/2$. Let $x, y \in X$ be such that $d(x, y) < \delta$. Let i = 1, ..., n be such that $x \in B(x_i, \delta(x_i)/2)$. Then $d(y, x_i) \le d(y, x) + d(x, x_i) < \delta + \delta(x_i)/2 \le \delta(x_i)/2 + \delta(x_i)/2 = \delta(x_i)$ and so $d(f(y), f(x_i)) < \varepsilon/2$. Now $d(f(x), f(y)) \le d(f(x), f(x_i)) + d(f(x_i), f(y)) < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Given a sequence $(a_n)_n$ recall that $\limsup a_n$ is defined as $\lim_{n\to\infty} \sup\{a_m : m > n\}$.

7. Let $\sum_{n} a_{n}x^{n}$ be a power series. Let $R = 1/\text{limsup } |a_{n}|^{1/n}$. Show that $\sum_{n} a_{n}x^{n}$ converges absolutely for |x| < R and diverges for |x| > R. (Recall that if $b_{n} \ge 0$ for all n then limsup b_{n} is defined as the limit of the nonincreasing sequence $\sup\{b_{i}: i > n\} \in \mathbb{R}^{\geq 0} \cup \{\infty\}$ and $1/\infty$ and 1/0 are defined to be 0 and ∞ respectively. R is called the radius of convergence of the series $\sum_{n} a_{n}x^{n}$).

Proof: Let $r = \text{limsup } |a_n|^{1/n} < 1$. Let $\varepsilon = (1 - r)/2$ and $\rho = r + \varepsilon$. Then $\rho = r + \varepsilon = r + (1-r)/2 = (1 + r)/2 < 1$. Since $\varepsilon > 0$, the nonincreasing sequence $\sup\{|a_n|^{1/n} : i > n\} < r + \varepsilon$ after a while. i.e. $|a_n|^{1/n} \in [r, r + \varepsilon)$

8. Let $0 \le S < R$. Show that $\sum_{n = a_n x^n}$ converges uniformly on $\{x : |x| \le S\}$.

9. Show that the radius of convergence of the power series $\sum_{n\geq 0} a_n x^n$ and $\sum_{n>0} na_n x^{n-1}$ are the same.

10. Let $\sum_n a_n x^n$ be a power series and *R* its radius of convergence. Show that the series is differentiable at any *x* such that |x| < R.