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1. Let X be a topological space. A collection ℑ of subsets of X is said to be locally finite in 

X if every point of X has a neighborhood that intersects only finitely many elements of ℑ. Let 

ℑ be locally finite. 

1a. Show that any subcollection of ℑ is locally finite. 

1b. Show that {cl(A) : A ∈ ℑ} is locally finite. 

1c. Show that cl(∪A ∈ ℑ A) = ∪A ∈ ℑ cl(A). 

Proof. 1a. Clear. 

1b. Let x ∈ X. Let U be an open neighborhood of x that intersects only finitely many A ∈ 

ℑ. Suppose U ∩ cl(A) ≠ ∅ for some A ∈ ℑ. Let y ∈ U ∩ cl(A). Since U is an open 

neighborhood of y, U ∩ A ≠ ∅. Thus there are finitely many such A. 

1c. Let A ∈ ℑ. Since A ⊆ ∪A ∈ ℑ A ⊆ cl(∪A ∈ ℑ A), cl(A) ⊆ cl(∪A ∈ ℑ A). Hence ∪A ∈ ℑ cl(A) 

⊆ cl(∪A ∈ ℑ A). Conversely suppose there is an x ∈ cl(∪A ∈ ℑ A) \ ∪A ∈ ℑ cl(A). Let U be any 

open subset containing x which intersects only finitely many A ∈ ℑ. Let ℘ = {A ∈ ℑ : A ∩ U 

≠ ∅}. Then x ∈ cl(∪A ∈ ℑ A) = cl((∪A ∈ ℑ \ ℘ A) ∪ (∪A ∈ ℑ A)) = cl(∪A ∈ ℑ \ ℘ A) ∪ (∪A ∈ ℘ 

cl(A)). Since x ∉ cl(A) for any A ∈ ℑ, x ∈ cl(∪A ∈ ℑ \ ℘ A). Thus U ∩ (∪A ∈ ℑ \ ℘ A) ≠ ∅, a 

contradiction. 

 

2. Let ℑ be a collection of subsets of the topological space X. A collection ℘ of subsets of 

X is said to be a refinement of ℑ if for each B ∈ ℘ there is an A ∈ ℑ such that B ⊆ A. 

Let ℑ be the following collection of subsets of �: ℑ = {(n, n + 2) : n ∈ �}. Which of the 

following refine ℑ: 

℘1 = {(x, x + 1) : x ∈ �}, 

℘2 = {(n, n + 3/2) : n ∈ �}, 

℘1 = {(x, x + 3/2) : x ∈ �}. 

Answer: For ℘1: Let x ∈ �. Then [x] ≤ x < x + 1 < ([x] + 1) + 1 = [x] + 2, so that (x, x + 1) 

⊆ ([x], [x] + 2). Hence ℘1 refines ℑ. 

For ℘2: (n, n + 3/2) ⊆ (n, n + 2). Hence ℘2 refines ℑ as well. 

For ℘3: Take x = 3/4. Then (x, x + 3/2) = (3/4, 9/4) ∈ ℘3 and none of the intervals of ℑ 

contains it. Thus ℘3 does not refine ℑ. 

 

3. A space is said to be normal if for every pair of disjoint closed subsets A and B there 

are open disjoint subsets U, V containing A and B respectively. Show that every metric space 

is normal. 

Proof: Let a ∈ A. Consider the subset {d(a, b) : b ∈ A} of �≥0
. 

If 0 were in the closure of this set, then we could find a sequence (bn)n∈� such that limn→∞ 

d(a, bn) = 0. Then we can choose a convergent subsequence (cn)n of (bn)n . We have 

necessarily limn→∞ cn = a. But then a ∈ B, a contradiction. 

Thus there is an α(a) > 0 such that d(a, b) > α(a) for all b ∈ B. 

Similarly, for all b ∈ B, there is a β(b) > 0 such that d(a, b) > β(b) for all a ∈ A. 



Now consider U = ∪a∈A B(a, α(a)/2) and V = ∪b∈B B(b, β(b)/2). Assume x ∈ B(a, α(a)/2) 

∩ B(b, β(b)/2) for some a ∈ A and b ∈ B. Assume also, without loss of generality, that α(a) ≤ 

β(b). Then d(a, b) ≤ d(a, x) + d(x, b) < α(a)/2 + β(b)/2 ≤ β(b), a contradiction. 

 

4. Show that a closed subspace of a normal space is normal. 

Proof: Let Y be a closed subspace of X. Let A and B be two disjoint closed subsets of Y. 

Then A and B are closed in X. Hence there are disjoint open subsets U and V of X containing A 

and B respectively. Then U ∩ Y and V ∩ Y are disjoint open subsets of Y containing A and B 

respectively. 

 

5. Let X be a totally ordered set. Let ℑ be the collection of all sets of the following types: 

(1) Open intervals (a, b) = {x ∈ X : a < x < b}. 

(2) Intervals of the form [a0, b) where a0 is the smallest element of X (if there is any). 

(3) Intervals of the form (b, a1] where a1 is the largest element of X (if there is any). 

Consider the topology generated by ℑ. Show that this topology is Hausdorff. 

Proof: Let a, b ∈ X be distinct. Without loss of generality assume a < b. 

Assume first there is a c ∈ (a, b). 

If a is the least element and b is the largest element then [a, c) and (c, b] separate a and b. 

If a is the least element and b is not the largest element then let d > b. Then [a, c) and (c, 

d) separate a and b. 

If neither a nor b are the extremal points then let d < a and b < e. Then (d, c) and (c, e) 

separate a and b. 

Now assume that (a, b) = ∅. 

If a is the least element and b is the largest element then [a, b) = {a} and (a, b] = {b} 

separate a and b. 

If a is the least element and b is not the largest element then let d > b. Then [a, b) = 

{a}and (a, d) separate a and b. 

If neither a nor b are the extremal points then let d < a and b < e. Then (d, b) and (a, e) 

separate a and b. 

 

6. Show that a topological space is Hausdorff if and only if the diagonal  

∆ = {(x, x) : x ∈ X} 

is closed. 

Proof: Suppose X is Hausdorff. Let x ≠ y. Let U and V be two open disjoint subsets of X 

containing x and y respectively. Then U × V is an open subset of X × X not intersecting ∆. 

Hence ∆ is closed. 

Conversely suppose ∆ is closed. Let x ≠ y. Then (x, y) ∉ ∆ and (x, y) is in the open subset 

∆c
. So there is a basic open subset U × V containing (x, y) not intersecting ∆. Hence U and V 

separate x and y. 

 

7. Find a function f : � → � that is continuous at precisely one point. 

Solution: Let f(x) = x if x ∈ � and f(x) = 0 if x ∉ �. We claim that f is continuous at 0 

only.  

Continuity at 0: Let ε > 0 be any. Let δ = ε. Then for all |x − 0| < δ, |f(x) − f(0)| = |f(x)| = 0 

or x ∈ (−ε, ε).  

Discontinuity at a ∈∈∈∈ �>0.... Let ε = a. Let δ > 0 be any. Then for x ∈ � \ � such that |x − 

a| < δ, |f(x) − f(a)| = a ∉ (−ε, ε). 



Discontinuity at a ∈∈∈∈ �>0 \ �....    Let ε = a/2. Let δ > 0 be any. Let α = inf{ε, δ}. Then for 

x ∈ � such that |x − a| < α, |f(x) − f(a)| = x ∉ (−ε, ε). 

 

8. Let X be a topological space. Let C be a connected subset of X. 

8a. Show that cl(C) is connected. 

8b. Let A ⊆ X be connected. Show that there is a maximal connected subset B containing 

X. 

8c. Show that every maximal connected subset is closed. 

8d. Show that X is a disjoint union of maximal connected subsets. 

Proof: 8a. Suppose cl(C) ⊆ U ∪ V for two open and disjoint subsets U and V. Then C ⊆ 

U ∪ V. Hence either C ⊆ U or C ⊆ V. In the first case cl(C) ⊆ V
c
 and in the second case cl(C) 

⊆ U
c
. Therefore either cl(C) ∩ V = ∅ or cl(C) ∩ U = ∅. 

8b. Let B be the union of connected subsets of X containing A. We claim that B is 

connected; this will prove the assertion. Let B ⊆ U ∪ V where U and V are open and disjoint. 

Let C be any connected subspace containing A. Then C ⊆ U ∪ V and thereforr either C ⊆ U 

or C ⊆ V. Since the same holds for A, all such C must be either in U or in V. Hence either B ⊆ 

U or B ⊆ V. 

8c. Let C be a maximal connected subset. Then by 8a, cl(C) is connected as well. Hence C 

= cl(C). 

8d. Let C and D be two connected subsets. Assume C ∩ D ≠ ∅. Let x ∈ C ∩ D. Then {x} 

is connected and C and D are maximal connected subsets containing {x}. Hence C = D by 8b. 

If we let Cx denote the maximal connected subset containing x then X is the disjoint union of 

sets of the form Cx for some x ∈ X. (Set x ≡ y iff Cx = Cy. Then this is an equivalence relation 

and the equivalence classe of x is Cx). 

 

9. Let X have countable basis. Let A be an uncountable subset of X. Show that 

uncountably many points of A are limit points of A. 

 

 


