Topology Final (Math 222) Doğan Bilge 2005

1. Let X be a topological space. A collection \Im of subsets of X is said to be **locally finite** in X if every point of X has a neighborhood that intersects only finitely many elements of \Im . Let \Im be locally finite.

1a. Show that any subcollection of \mathfrak{I} is locally finite.

1b. Show that $\{cl(A) : A \in \mathfrak{I}\}$ is locally finite.

1c. Show that $\operatorname{cl}(\bigcup_{A \in \mathfrak{I}} A) = \bigcup_{A \in \mathfrak{I}} \operatorname{cl}(A)$.

Proof. 1a. Clear.

1b. Let $x \in X$. Let U be an open neighborhood of x that intersects only finitely many $A \in \mathfrak{S}$. Suppose $U \cap \operatorname{cl}(A) \neq \emptyset$ for some $A \in \mathfrak{S}$. Let $y \in U \cap \operatorname{cl}(A)$. Since U is an open neighborhood of y, $U \cap A \neq \emptyset$. Thus there are finitely many such A.

1c. Let $A \in \mathfrak{J}$. Since $A \subseteq \bigcup_{A \in \mathfrak{J}} A \subseteq \operatorname{cl}(\bigcup_{A \in \mathfrak{J}} A)$, $\operatorname{cl}(A) \subseteq \operatorname{cl}(\bigcup_{A \in \mathfrak{J}} A)$. Hence $\bigcup_{A \in \mathfrak{J}} \operatorname{cl}(A)$ $\subseteq \operatorname{cl}(\bigcup_{A \in \mathfrak{J}} A)$. Conversely suppose there is an $x \in \operatorname{cl}(\bigcup_{A \in \mathfrak{J}} A) \setminus \bigcup_{A \in \mathfrak{J}} \operatorname{cl}(A)$. Let U be any open subset containing x which intersects only finitely many $A \in \mathfrak{J}$. Let $\wp = \{A \in \mathfrak{J} : A \cap U \neq \emptyset\}$. Then $x \in \operatorname{cl}(\bigcup_{A \in \mathfrak{J}} A) = \operatorname{cl}((\bigcup_{A \in \mathfrak{J}} \bigvee_{\wp} A) \cup (\bigcup_{A \in \mathfrak{J}} A)) = \operatorname{cl}(\bigcup_{A \in \mathfrak{J}} \bigvee_{\wp} A) \cup (\bigcup_{A \in \mathfrak{J}} \bigotimes_{\wp} A) \cup (\bigcup_{A \in \mathfrak{J}} \bigvee_{\wp} A) \neq \emptyset$, a contradiction.

2. Let \mathfrak{I} be a collection of subsets of the topological space X. A collection \mathfrak{O} of subsets of X is said to be a **refinement** of \mathfrak{I} if for each $B \in \mathfrak{O}$ there is an $A \in \mathfrak{I}$ such that $B \subseteq A$.

Let \mathfrak{S} be the following collection of subsets of \mathbb{R} : $\mathfrak{S} = \{(n, n + 2) : n \in \mathbb{Z}\}$. Which of the following refine \mathfrak{S} :

 $\mathcal{D}_1 = \{(x, x+1) : x \in \mathbb{R}\},\$

 $\mathcal{D}_2 = \{ (n, n + 3/2) : n \in \mathbb{Z} \},\$

 $\mathcal{D}_1 = \{(x, x + 3/2) : x \in \mathbb{R}\}.$

Answer: For \wp_1 : Let *x* ∈ ℝ. Then $[x] \le x < x + 1 < ([x] + 1) + 1 = [x] + 2$, so that $(x, x + 1) \subseteq ([x], [x] + 2)$. Hence \wp_1 refines \Im .

For \mathscr{D}_2 : $(n, n + 3/2) \subseteq (n, n + 2)$. Hence \mathscr{D}_2 refines \mathfrak{S} as well.

For \wp_3 : Take x = 3/4. Then $(x, x + 3/2) = (3/4, 9/4) \in \wp_3$ and none of the intervals of \Im contains it. Thus \wp_3 does not refine \Im .

3. A space is said to be **normal** if for every pair of disjoint closed subsets A and B there are open disjoint subsets U, V containing A and B respectively. Show that every metric space is normal.

Proof: Let $a \in A$. Consider the subset $\{d(a, b) : b \in A\}$ of $\mathbb{R}^{\geq 0}$.

If 0 were in the closure of this set, then we could find a sequence $(b_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} d(a, b_n) = 0$. Then we can choose a convergent subsequence $(c_n)_n$ of $(b_n)_n$. We have necessarily $\lim_{n\to\infty} c_n = a$. But then $a \in B$, a contradiction.

Thus there is an $\alpha(a) > 0$ such that $d(a, b) > \alpha(a)$ for all $b \in B$.

Similarly, for all $b \in B$, there is a $\beta(b) > 0$ such that $d(a, b) > \beta(b)$ for all $a \in A$.

Now consider $U = \bigcup_{a \in A} B(a, \alpha(a)/2)$ and $V = \bigcup_{b \in B} B(b, \beta(b)/2)$. Assume $x \in B(a, \alpha(a)/2)$ $\cap B(b, \beta(b)/2)$ for some $a \in A$ and $b \in B$. Assume also, without loss of generality, that $\alpha(a) \leq \beta(b)$. Then $d(a, b) \leq d(a, x) + d(x, b) < \alpha(a)/2 + \beta(b)/2 \leq \beta(b)$, a contradiction.

4. Show that a closed subspace of a normal space is normal.

Proof: Let *Y* be a closed subspace of *X*. Let *A* and *B* be two disjoint closed subsets of *Y*. Then *A* and *B* are closed in *X*. Hence there are disjoint open subsets *U* and *V* of *X* containing *A* and *B* respectively. Then $U \cap Y$ and $V \cap Y$ are disjoint open subsets of *Y* containing *A* and *B* respectively.

5. Let *X* be a totally ordered set. Let \Im be the collection of all sets of the following types: (1) Open intervals $(a, b) = \{x \in X : a < x < b\}$.

(2) Intervals of the form $[a_0, b)$ where a_0 is the smallest element of X (if there is any).

(3) Intervals of the form $(b, a_1]$ where a_1 is the largest element of X (if there is any).

Consider the topology generated by \Im . Show that this topology is Hausdorff.

Proof: Let $a, b \in X$ be distinct. Without loss of generality assume a < b.

Assume first there is a $c \in (a, b)$.

If a is the least element and b is the largest element then [a, c) and (c, b] separate a and b.

If *a* is the least element and *b* is not the largest element then let d > b. Then [a, c) and (c, d) separate *a* and *b*.

If neither a nor b are the extremal points then let d < a and b < e. Then (d, c) and (c, e) separate a and b.

Now assume that $(a, b) = \emptyset$.

If *a* is the least element and *b* is the largest element then $[a, b) = \{a\}$ and $(a, b] = \{b\}$ separate *a* and *b*.

If a is the least element and b is not the largest element then let d > b. Then $[a, b) = \{a\}$ and (a, d) separate a and b.

If neither a nor b are the extremal points then let d < a and b < e. Then (d, b) and (a, e) separate a and b.

6. Show that a topological space is Hausdorff if and only if the diagonal $\Delta = \{(x, x) : x \in X\}$

is closed.

Proof: Suppose X is Hausdorff. Let $x \neq y$. Let U and V be two open disjoint subsets of X containing x and y respectively. Then $U \times V$ is an open subset of $X \times X$ not intersecting Δ . Hence Δ is closed.

Conversely suppose Δ is closed. Let $x \neq y$. Then $(x, y) \notin \Delta$ and (x, y) is in the open subset Δ^c . So there is a basic open subset $U \times V$ containing (x, y) not intersecting Δ . Hence U and V separate x and y.

7. Find a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point.

Solution: Let f(x) = x if $x \in \mathbb{Q}$ and f(x) = 0 if $x \notin \mathbb{Q}$. We claim that *f* is continuous at 0 only.

Continuity at 0: Let $\varepsilon > 0$ be any. Let $\delta = \varepsilon$. Then for all $|x - 0| < \delta$, |f(x) - f(0)| = |f(x)| = 0 or $x \in (-\varepsilon, \varepsilon)$.

Discontinuity at $a \in \mathbb{Q}^{>0}$. Let $\varepsilon = a$. Let $\delta > 0$ be any. Then for $x \in \mathbb{R} \setminus \mathbb{Q}$ such that $|x - a| < \delta$, $|f(x) - f(a)| = a \notin (-\varepsilon, \varepsilon)$.

Discontinuity at $a \in \mathbb{R}^{>0} \setminus \mathbb{Q}$. Let $\varepsilon = a/2$. Let $\delta > 0$ be any. Let $\alpha = \inf\{\varepsilon, \delta\}$. Then for $x \in \mathbb{Q}$ such that $|x - a| < \alpha$, $|f(x) - f(a)| = x \notin (-\varepsilon, \varepsilon)$.

8. Let X be a topological space. Let C be a connected subset of X. **8a.** Show that cl(C) is connected.

8b. Let $A \subseteq X$ be connected. Show that there is a maximal connected subset *B* containing *X*.

8c. Show that every maximal connected subset is closed.

8d. Show that X is a disjoint union of maximal connected subsets. **Proof: 8a.** Suppose $cl(C) \subseteq U \cup V$ for two open and disjoint subsets U and V. Then $C \subseteq$

 $U \cup V$. Hence either $C \subseteq U$ or $C \subseteq V$. In the first case $cl(C) \subseteq V^c$ and in the second case $cl(C) \subseteq U^c$. Therefore either $cl(C) \cap V = \emptyset$ or $cl(C) \cap U = \emptyset$.

8b. Let *B* be the union of connected subsets of *X* containing *A*. We claim that *B* is connected; this will prove the assertion. Let $B \subseteq U \cup V$ where *U* and *V* are open and disjoint. Let *C* be any connected subspace containing *A*. Then $C \subseteq U \cup V$ and therefore either $C \subseteq U$ or $C \subseteq V$. Since the same holds for *A*, all such *C* must be either in *U* or in *V*. Hence either $B \subseteq U$ or $B \subseteq V$.

8c. Let *C* be a maximal connected subset. Then by 8a, cl(C) is connected as well. Hence C = cl(C).

8d. Let *C* and *D* be two connected subsets. Assume $C \cap D \neq \emptyset$. Let $x \in C \cap D$. Then $\{x\}$ is connected and *C* and *D* are maximal connected subsets containing $\{x\}$. Hence C = D by 8b. If we let C_x denote the maximal connected subset containing *x* then *X* is the disjoint union of sets of the form C_x for some $x \in X$. (Set $x \equiv y$ iff $C_x = C_y$. Then this is an equivalence relation and the equivalence classe of *x* is C_x).

9. Let X have countable basis. Let A be an uncountable subset of X. Show that uncountably many points of A are limit points of A.