1. Let X be a topological space. A collection \mathfrak{I} of subsets of X is said to be locally finite in X if every point of X has a neighborhood that intersects only finitely many elements of \mathfrak{J}. Let \mathfrak{I} be locally finite.

1a. Show that any subcollection of \mathfrak{J} is locally finite.
1b. Show that $\{\operatorname{cl}(A): A \in \mathfrak{I}\}$ is locally finite.
1c. Show that $\operatorname{cl}\left(\cup_{A \in \mathfrak{J}} A\right)=\cup_{A \in \mathfrak{I}} \operatorname{cl}(A)$.
Proof. 1a. Clear.
1b. Let $x \in X$. Let U be an open neighborhood of x that intersects only finitely many $A \in$ I. Suppose $U \cap \operatorname{cl}(A) \neq \varnothing$ for some $A \in \mathfrak{I}$. Let $y \in U \cap \operatorname{cl}(A)$. Since U is an open neighborhood of $y, U \cap A \neq \varnothing$. Thus there are finitely many such A.

1c. Let $A \in \mathfrak{I}$. Since $A \subseteq \cup_{A \in \mathfrak{J}} A \subseteq \operatorname{cl}\left(\cup_{A \in \mathfrak{I}} A\right), \operatorname{cl}(A) \subseteq \operatorname{cl}\left(\cup_{A \in \mathfrak{I}} A\right)$. Hence $\cup_{A \in \mathfrak{I}} \operatorname{cl}(A)$ $\subseteq \operatorname{cl}\left(\cup_{A \in \mathfrak{I}} A\right)$. Conversely suppose there is an $x \in \operatorname{cl}\left(\cup_{A \in \mathfrak{I}} A\right) \backslash \cup_{A \in \mathfrak{I}} \operatorname{cl}(A)$. Let U be any open subset containing x which intersects only finitely many $A \in \mathfrak{I}$. Let $\wp=\{A \in \mathfrak{I}: A \cap U$ $\neq \varnothing\}$. Then $x \in \operatorname{cl}\left(\cup_{A \in \mathfrak{J}} A\right)=\operatorname{cl}\left(\left(\cup_{A \in \mathfrak{I} \backslash \wp} A\right) \cup\left(\cup_{A \in \mathfrak{I}} A\right)\right)=\operatorname{cl}\left(\cup_{A \in \mathfrak{I} \backslash \wp} A\right) \cup\left(\cup_{A \in \wp}\right.$ $\operatorname{cl}(A))$. Since $x \notin \operatorname{cl}(A)$ for any $A \in \mathfrak{I}, x \in \operatorname{cl}\left(\cup_{A \in \mathfrak{I} \backslash \wp} A\right)$. Thus $U \cap\left(\cup_{A \in \mathfrak{I} \backslash \wp} A\right) \neq \varnothing$, a contradiction.
2. Let \mathfrak{I} be a collection of subsets of the topological space X. A collection \wp of subsets of X is said to be a refinement of \mathfrak{I} if for each $B \in \wp$ there is an $A \in \mathfrak{I}$ such that $B \subseteq A$.

Let \mathfrak{I} be the following collection of subsets of $\mathbb{R}: \mathfrak{I}=\{(n, n+2): n \in \mathbb{Z}\}$. Which of the following refine \mathfrak{J} :

$$
\begin{aligned}
\wp_{1} & =\{(x, x+1): x \in \mathbb{R}\} \\
\wp_{2} & =\{(n, n+3 / 2): n \in \mathbb{Z}\} \\
\wp_{1} & =\{(x, x+3 / 2): x \in \mathbb{R}\}
\end{aligned}
$$

Answer: For \wp_{1} : Let $x \in \mathbb{R}$. Then $[x] \leq x<x+1<([x]+1)+1=[x]+2$, so that $(x, x+1)$ $\subseteq([x],[x]+2)$. Hence \wp_{1} refines \mathfrak{J}.

For $\wp_{2}:(n, n+3 / 2) \subseteq(n, n+2)$. Hence \wp_{2} refines \mathfrak{J} as well.
For \wp_{3} : Take $x=3 / 4$. Then $(x, x+3 / 2)=(3 / 4,9 / 4) \in \wp_{3}$ and none of the intervals of \mathfrak{I} contains it. Thus \wp_{3} does not refine \mathfrak{J}.
3. A space is said to be normal if for every pair of disjoint closed subsets A and B there are open disjoint subsets U, V containing A and B respectively. Show that every metric space is normal.

Proof: Let $a \in A$. Consider the subset $\{d(a, b): b \in A\}$ of $\mathbb{R}^{\geq 0}$.
If 0 were in the closure of this set, then we could find a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty}$ $d\left(a, b_{n}\right)=0$. Then we can choose a convergent subsequence $\left(c_{n}\right)_{n}$ of $\left(b_{n}\right)_{n}$. We have necessarily $\lim _{n \rightarrow \infty} c_{n}=a$. But then $a \in B$, a contradiction.

Thus there is an $\alpha(a)>0$ such that $d(a, b)>\alpha(a)$ for all $b \in B$.
Similarly, for all $b \in B$, there is a $\beta(b)>0$ such that $d(a, b)>\beta(b)$ for all $a \in A$.

Now consider $U=\cup_{a \in A} B(a, \alpha(a) / 2)$ and $V=\cup_{b \in B} B(b, \beta(b) / 2)$. Assume $x \in B(a, \alpha(a) / 2)$ $\cap B(b, \beta(b) / 2)$ for some $a \in A$ and $b \in B$. Assume also, without loss of generality, that $\alpha(a) \leq$ $\beta(b)$. Then $d(a, b) \leq d(a, x)+d(x, b)<\alpha(a) / 2+\beta(b) / 2 \leq \beta(b)$, a contradiction.
4. Show that a closed subspace of a normal space is normal.

Proof: Let Y be a closed subspace of X. Let A and B be two disjoint closed subsets of Y. Then A and B are closed in X. Hence there are disjoint open subsets U and V of X containing A and B respectively. Then $U \cap Y$ and $V \cap Y$ are disjoint open subsets of Y containing A and B respectively.
5. Let X be a totally ordered set. Let \mathfrak{I} be the collection of all sets of the following types:
(1) Open intervals $(a, b)=\{x \in X: a<x<b\}$.
(2) Intervals of the form $\left[a_{0}, b\right)$ where a_{0} is the smallest element of X (if there is any).
(3) Intervals of the form (b, a_{1}] where a_{1} is the largest element of X (if there is any).

Consider the topology generated by \mathfrak{I}. Show that this topology is Hausdorff.
Proof: Let $a, b \in X$ be distinct. Without loss of generality assume $a<b$.
Assume first there is a $c \in(a, b)$.
If a is the least element and b is the largest element then $[a, c)$ and $(c, b]$ separate a and b.
If a is the least element and b is not the largest element then let $d>b$. Then $[a, c)$ and (c, d) separate a and b.

If neither a nor b are the extremal points then let $d<a$ and $b<e$. Then (d, c) and (c, e) separate a and b.

Now assume that $(a, b)=\varnothing$.
If a is the least element and b is the largest element then $[a, b)=\{a\}$ and $(a, b]=\{b\}$ separate a and b.

If a is the least element and b is not the largest element then let $d>b$. Then $[a, b)=$ $\{a\}$ and (a, d) separate a and b.

If neither a nor b are the extremal points then let $d<a$ and $b<e$. Then (d, b) and (a, e) separate a and b.
6. Show that a topological space is Hausdorff if and only if the diagonal

$$
\Delta=\{(x, x): x \in X\}
$$

is closed.
Proof: Suppose X is Hausdorff. Let $x \neq y$. Let U and V be two open disjoint subsets of X containing x and y respectively. Then $U \times V$ is an open subset of $X \times X$ not intersecting Δ. Hence Δ is closed.

Conversely suppose Δ is closed. Let $x \neq y$. Then $(x, y) \notin \Delta$ and (x, y) is in the open subset Δ^{c}. So there is a basic open subset $U \times V$ containing (x, y) not intersecting Δ. Hence U and V separate x and y.
7. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at precisely one point.

Solution: Let $f(x)=x$ if $x \in \mathbb{Q}$ and $f(x)=0$ if $x \notin \mathbb{Q}$. We claim that f is continuous at 0 only.

Continuity at 0: Let $\varepsilon>0$ be any. Let $\delta=\varepsilon$. Then for all $|x-0|<\delta,|f(x)-f(0)|=|f(x)|=0$ or $x \in(-\varepsilon, \varepsilon)$.

Discontinuity at $a \in \mathbb{Q}>0$. Let $\varepsilon=a$. Let $\delta>0$ be any. Then for $x \in \mathbb{R} \backslash \mathbb{Q}$ such that $\mid x-$ $a|<\delta,|f(x)-f(a)|=a \notin(-\varepsilon, \varepsilon)$.

Discontinuity at $a \in \mathbb{R}>0 \backslash \mathbb{Q}$. Let $\varepsilon=a / 2$. Let $\delta>0$ be any. Let $\alpha=\inf \{\varepsilon, \delta\}$. Then for $x \in \mathbb{Q}$ such that $|x-a|<\alpha,|f(x)-f(a)|=x \notin(-\varepsilon, \varepsilon)$.
8. Let X be a topological space. Let C be a connected subset of X.

8a. Show that $\operatorname{cl}(C)$ is connected.
8b. Let $A \subseteq X$ be connected. Show that there is a maximal connected subset B containing X.

8c. Show that every maximal connected subset is closed.
8d. Show that X is a disjoint union of maximal connected subsets.
Proof: 8a. Suppose $\mathrm{cl}(C) \subseteq U \cup V$ for two open and disjoint subsets U and V. Then $C \subseteq$ $U \cup V$. Hence either $C \subseteq U$ or $C \subseteq V$. In the first case $\operatorname{cl}(C) \subseteq V^{c}$ and in the second case $\operatorname{cl}(C)$ $\subseteq U^{c}$. Therefore either $\operatorname{cl}(C) \cap V=\varnothing$ or $\operatorname{cl}(C) \cap U=\varnothing$.
$\mathbf{8 b}$. Let B be the union of connected subsets of X containing A. We claim that B is connected; this will prove the assertion. Let $B \subseteq U \cup V$ where U and V are open and disjoint. Let C be any connected subspace containing A. Then $C \subseteq U \cup V$ and thereforr either $C \subseteq U$ or $C \subseteq V$. Since the same holds for A, all such C must be either in U or in V. Hence either $B \subseteq$ U or $B \subseteq V$.

8c. Let C be a maximal connected subset. Then by $8 \mathrm{a}, \mathrm{cl}(C)$ is connected as well. Hence C $=\operatorname{cl}(C)$.

8d. Let C and D be two connected subsets. Assume $C \cap D \neq \varnothing$. Let $x \in C \cap D$. Then $\{x\}$ is connected and C and D are maximal connected subsets containing $\{x\}$. Hence $C=D$ by 8 b . If we let C_{x} denote the maximal connected subset containing x then X is the disjoint union of sets of the form C_{x} for some $x \in X$. (Set $x \equiv y$ iff $C_{x}=C_{y}$. Then this is an equivalence relation and the equivalence classe of x is C_{x}).
9. Let X have countable basis. Let A be an uncountable subset of X. Show that uncountably many points of A are limit points of A.

