Topology Resit Exam (Math 112)

September, 2004,
Ali Nesin
Answers without proof or justification will not be accepted.
Do not use symbols such as $\forall, \exists, \Rightarrow$. Make full sentences, in either language you feel confortable with.

1. Let $f: X \rightarrow Y$ be a function from a topological space X into a topological space Y. Let A be the set of points of X where f is discontinuous. Let g be the restriction of f to $X \backslash A$. Is g continuous everywhere? Prove or disprove.

Proof: You should first notice that $X \backslash A$ has the induced subset topology, otherwise the question has no meaning. Let $x \in X \backslash A$. By definition f is continuous at x. Let V be an open subset of Y containing $g(x)$. Since $g(x)=f(x)$ and f is continuous at x, there is an open subset U of X such that $x \in U \subseteq f^{-1}(V)$. Then $x \in U \cap(X \backslash A) \subseteq f^{-1}(V) \cap(X \backslash A)=g^{-1}(V)$. (Here, the last equality is to be proven). Since $U \cap(X \backslash A)$ is an open subset of $X \backslash A$, it follows that g is continuous at x.
2. Let X be a topological space. A point x of X is called isolated if $\{x\}$ is open. Let A be the set of isolated points of X. Does the space $X \backslash A$ has any isolated points? Prove or disprove.

Answer: Yes, the space $X \backslash A$ may have isolated points. Here, once again $X \backslash A$ is endowed with the induced subset topology. Let $X=\{1 / n: n=1,2,3, \ldots\} \cup\{0\}$, with the topology induced from the Euclidean topology of \mathbb{R}. Then each $1 / n$ is an isolated point of X but 0 is not an isolated point. Thus $X \backslash A=\{0\}$ and 0 is an isolated point of $X \backslash A$.
3. Let X be a topological space and $f: X \rightarrow X$ be a function. Suppose that f o f is continuous. Is f necessarily continuous? Prove or disprove.

Answer: Wrong! Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=0$ if $x \in \mathbb{Q}$ and $f(x)=1$ otherwise. f is not continuous. But f o f is the constant 0 function and so is continuous.
4. Let X and Y be topological spaces. Let $f: X \rightarrow Y$ be a function. Let $g: X \rightarrow f(X)$ be defined as f. Thus, $f(x)=g(x)$ for all $x \in X$. Does the continuity of one of f or g imply the continuity of the other? Prove or disprove both.

Answer: Continuity of one imply the continuity of the other. Suppose first f is continuous. Let W be an open subset of $f(X)$. Thus $W=V \cap f(X)$ for an open subset V of Y. Then $g^{-1}(W)=$ $g^{-1}(V \cap f(X))=g^{-1}(V) \cap g^{-1}(f(X))=f^{-1}(V) \cap X=f^{-1}(V)$ and is open in X. Suppose now g is continuous. Let V be an open subset of Y. Then $f^{-1}(V)=f^{-1}(V \cap f(X))=g^{-1}(V \cap f(X))$ and so $f^{-1}(V)$ is an open subset of X because $V \cap f(X)$ is an open subset of $f(X)$.
5. A map $f: X \rightarrow Y$ from a topological space X into a topological space Y is called closed (resp. open) if $f(C)$ is closed (resp. open) in Y for any closed (resp. open) subset C of X.

5a. Let $A \subseteq X$ be a subset endowed with the induced topology. When is the inclusion map i $: A \rightarrow X$ is open (resp. closed)?

Answer: If i is open (resp. closed), then $i(A)$ is open (resp. closed) in X, i.e. A is open (resp. closed) in X. We show that this condition is enough to show that i is open (resp. closed). Let S be an open (resp. closed) subset of A. Then $S=T \cap A$ for some open (resp. closed) subset T of X. Then $i(S)=S=T \cap A$ is open (resp. closed) in A.

5b. Let $f: X \rightarrow Y$ be a map from a set X into a topological space Y. Endow X with the least topology that makes f continuous. Is f necessarily open? Is f necessarily closed? Prove or disprove.

Answer: Recall that open subsets of X are the inverse images of open subsets of Y under f. It follows quite easily that closed subsets of X are the inverse images of closed subsets of Y under f. Let S be an open (resp. closed) subset of X. Then $S=f^{-1}(T)$ for some open (resp. closed) subset of Y. Thus $f(S)=f\left(f^{-1}(T)\right) \subseteq T$, and the equality holds if f is onto. But if f is not onto the equality may not hold and in this case it seems that f may not be open (resp. closed) in Y.

Indeed let f be a constant function, say b. On Y take the topology where the open subsets are Y and the ones that do not contain the element b. Then the topology on X is the least topology where only \varnothing and X are open. Then $f(X)=\{b\}$ and is not open. So in this case f is not an open map.

Now let $c \in Y \backslash\{b\}$ and consider as open subsets of Y the set Y itself and the subsets that do not contain c. Thus closed subsets of Y are \varnothing and the subsets that contain c. Then $f(X)=$ $\{b\}$ and is not closed. So in this case f is not a closed map.

5c. Let $f: X \rightarrow Y$ be a continuous function. Let $g: X \rightarrow f(X)$ be defined by $g(x)=f(x)$. Supposing that f is open (resp. closed), does this imply that g is open (resp. closed)? Supposing that g is open (resp. closed), does this imply that fis open (resp. closed)?

Proof: Let Y be such that for some $b \in Y,\{b\}$ is not open in Y. E.g. $Y=\mathbb{R}$ with the usual topology. Let f be the constant function whose value is b. Then f is continuous but not open because $f(X)$ is not open in Y. On the other hand $g: X \rightarrow\{b\}$ is open, because $\{b\}$ is open in $\{b\}$. We may also choose Y so that $\{b\}$ is not closed in Y (e.g. $Y=\mathbb{R}$, where open subsets are only \varnothing and \mathbb{R}.) Then the constant b function f is continuous but not closed because $f(X)$ is not closed. But g is closed.

But if f is open (resp. closed), then g is open (resp. closed) because if $C \subseteq X$ is open (resp. closed), then $g(C)=f(C)$.

5d. Let X and Y be two topological spaces. Endow $X \times Y$ with the product topology. Let π : $X \times Y \rightarrow X$ be the first projection. Is π necessarily open? Is π necessarily closed? Prove or disprove.

Answer: π is not necessarily closed. For example, take $X=Y=\mathbb{R}$ with the usual topology and $C=\{(x, y): x y=1\}$. Then C is closed, but $\pi(C)=\mathbb{R} \backslash\{0\}$ is not closed. On the other hand π is open, because every open subset of $X \times Y$ is a union of sets of the form $U \times V$ where U and V are open in X and Y respectively, so that the image of an open subset of $X \times Y$ under π is the union of open subsets U that appear in its definition and is open.

5e. Find a continuous map $f: X \rightarrow X$ from a topological space X into itself which is not closed.

5f. Find a continuous map $f: X \rightarrow X$ from a topological space X into itself which is not open.

5g. Find a continuous map $f: X \rightarrow X$ from a topological space X into itself which is neither open nor closed.

Answer: Take $X=\mathbb{R}$ with its usual topology and $f(x)=1 /\left(1+x^{2}\right)$. Then $f(\mathbb{R})=(0,1]$ and is neither closed nor open.

5h. Find a closed function $f: X \rightarrow X$ from a topological space X into itself which is not continuous.

Answer: Take $X=\mathbb{R}$ and define $f(x)=0$ if $x \leq 0$ and $f(x)=1$ if $x>0$. Then f is closed but not continuous.

5i. Find an open function $f: X \rightarrow X$ from a topological space X into itself which is not continuous.

Answer: Let $X=\mathbb{R}^{\geq 0}$ with the usual topology. For $x \in \mathbb{R}$ let $[x]$ denote the largest integer such that $[x] \leq x$. Let $f(x)=x-[x]$ regarded as a function from X into X. Then f is open but not continuous.

5j. Let X, Y, Z be three topological spaces and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Show that if g of is open (resp. closed) and g is continuous and surjective then g is open (resp. closed). Find the limitations of this result.

Proof: Let V be an open subset of Y. Let $U=f^{-1}(V)$. Then U is open because f is continuous and $g(f(U)$) is open because g o f is open. But since f is surjective $f(U)=V$. Hence $g(V)=g(f(U))$ is open. The rest is left to you.

5k. Let X, Y, Z be three topological spaces and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Show that if g of is open (resp. closed) and if g is continuous and injective then f is open (resp. closed). Find the limitations of this result.

Proof: Let $U \subseteq X$ be an open subset. Then $g(f(U))$ is open because g o f is open and $g^{-1}\left(g(f(U))\right.$) is open because g is continuous. But $g^{-1}(g(V))=V$ for all $V \subseteq Y$ because g is injective. Thus $f(U)$ is open.
6. Let X and Y be topological spaces. Let $f: X \rightarrow Y$ be a function. Show that f is continuous and closed (see \# 5) if and only if $f(\underline{A})=\underline{f(A)}$ for every subset A of X. (Here \underline{A} denotes the closure of A).

Proof: Suppose f is continuous and closed. Let A be a subset of X. Then, since f is closed, $f(\underline{A})$ is closed, and since it contains $f(A), f(A) \subseteq f(\underline{A})$. Since f is continuous, $f^{-1}(f(A))$ is closed, and since it contains A, it also contains \underline{A}. Hence $f(\underline{A}) \subseteq f(A)$.

Conversely suppose that $f(\underline{A})=f(A)$ for every subset A of X. To show that f is continuous, it is enough to assume only that $f(\underline{A}) \subseteq f(A)$ for all $A \subseteq X$. Indeed, let F be a closed subset of Y. Then $f\left(f^{-1}(F)\right) \subseteq f\left(f^{-1}(F)\right) \subseteq \underline{F}=F$, so $f^{-1}(F) \subseteq f^{-1}(F)$. This shows that $f^{-1}(F)=f^{-1}(F)$ and $f^{-1}(F)$ is closed. This shows that f is continuous. Let now $A \subseteq X$ be closed. Then $f(A)=f(\underline{A})=f(A)$ and so $f(A)$ is closed.

