Topology Resit Exam (Math 112) September, 2004, Ali Nesin

Answers without proof or justification will not be accepted.

Do not use symbols such as \forall , \exists , \Rightarrow . Make full sentences, in either language you feel confortable with.

1. Let $f: X \to Y$ be a function from a topological space X into a topological space Y. Let A be the set of points of X where f is discontinuous. Let g be the restriction of f to $X \setminus A$. Is g continuous everywhere? Prove or disprove.

Proof: You should first notice that $X \setminus A$ has the induced subset topology, otherwise the question has no meaning. Let $x \in X \setminus A$. By definition f is continuous at x. Let V be an open subset of Y containing g(x). Since g(x) = f(x) and f is continuous at x, there is an open subset U of X such that $x \in U \subseteq f^{-1}(V)$. Then $x \in U \cap (X \setminus A) \subseteq f^{-1}(V) \cap (X \setminus A) = g^{-1}(V)$. (Here, the last equality is to be proven). Since $U \cap (X \setminus A)$ is an open subset of $X \setminus A$, it follows that g is continuous at x.

2. Let X be a topological space. A point x of X is called **isolated** if $\{x\}$ is open. Let A be the set of isolated points of X. Does the space $X \setminus A$ has any isolated points? Prove or disprove.

Answer: Yes, the space $X \setminus A$ may have isolated points. Here, once again $X \setminus A$ is endowed with the induced subset topology. Let $X = \{1/n : n = 1, 2, 3, ...\} \cup \{0\}$, with the topology induced from the Euclidean topology of \mathbb{R} . Then each 1/n is an isolated point of X but 0 is not an isolated point. Thus $X \setminus A = \{0\}$ and 0 is an isolated point of $X \setminus A$.

3. Let X be a topological space and $f : X \to X$ be a function. Suppose that f o f is continuous. Is f necessarily continuous? Prove or disprove.

Answer: Wrong! Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 0 if $x \in \mathbb{Q}$ and f(x) = 1 otherwise. *f* is not continuous. But *f* o *f* is the constant 0 function and so is continuous.

4. Let X and Y be topological spaces. Let $f : X \to Y$ be a function. Let $g : X \to f(X)$ be defined as f. Thus, f(x) = g(x) for all $x \in X$. Does the continuity of one of f or g imply the continuity of the other? Prove or disprove both.

Answer: Continuity of one imply the continuity of the other. Suppose first *f* is continuous. Let *W* be an open subset of f(X). Thus $W = V \cap f(X)$ for an open subset *V* of *Y*. Then $g^{-1}(W) = g^{-1}(V \cap f(X)) = g^{-1}(V) \cap g^{-1}(f(X)) = f^{-1}(V) \cap X = f^{-1}(V)$ and is open in *X*. Suppose now *g* is continuous. Let *V* be an open subset of *Y*. Then $f^{-1}(V) = f^{-1}(V \cap f(X)) = g^{-1}(V \cap f(X))$ and so $f^{-1}(V)$ is an open subset of *X* because $V \cap f(X)$ is an open subset of f(X).

5. A map $f: X \to Y$ from a topological space X into a topological space Y is called **closed** (resp. **open**) if f(C) is closed (resp. open) in Y for any closed (resp. open) subset C of X.

5a. Let $A \subseteq X$ be a subset endowed with the induced topology. When is the inclusion map $i : A \rightarrow X$ is open (resp. closed)?

Answer: If *i* is open (resp. closed), then i(A) is open (resp. closed) in *X*, i.e. *A* is open (resp. closed) in *X*. We show that this condition is enough to show that *i* is open (resp. closed). Let *S* be an open (resp. closed) subset of *A*. Then $S = T \cap A$ for some open (resp. closed) subset *T* of *X*. Then $i(S) = S = T \cap A$ is open (resp. closed) in *A*.

5b. Let $f: X \to Y$ be a map from a set X into a topological space Y. Endow X with the least topology that makes f continuous. Is f necessarily open? Is f necessarily closed? Prove or disprove.

Answer: Recall that open subsets of *X* are the inverse images of open subsets of *Y* under *f*. It follows quite easily that closed subsets of *X* are the inverse images of closed subsets of *Y* under *f*. Let *S* be an open (resp. closed) subset of *X*. Then $S = f^{-1}(T)$ for some open (resp. closed) subset of *Y*. Thus $f(S) = f(f^{-1}(T)) \subseteq T$, and the equality holds if *f* is onto. But if *f* is not onto the equality may not hold and in this case it seems that *f* may not be open (resp. closed) in *Y*.

Indeed let *f* be a constant function, say *b*. On *Y* take the topology where the open subsets are *Y* and the ones that do not contain the element *b*. Then the topology on *X* is the least topology where only \emptyset and *X* are open. Then $f(X) = \{b\}$ and is not open. So in this case *f* is not an open map.

Now let $c \in Y \setminus \{b\}$ and consider as open subsets of *Y* the set *Y* itself and the subsets that do not contain *c*. Thus closed subsets of *Y* are \emptyset and the subsets that contain *c*. Then $f(X) = \{b\}$ and is not closed. So in this case *f* is not a closed map.

5c. Let $f: X \to Y$ be a continuous function. Let $g: X \to f(X)$ be defined by g(x) = f(x). Supposing that f is open (resp. closed), does this imply that g is open (resp. closed)? Supposing that g is open (resp. closed), does this imply that f is open (resp. closed)?

Proof: Let *Y* be such that for some $b \in Y$, $\{b\}$ is not open in *Y*. E.g. $Y = \mathbb{R}$ with the usual topology. Let *f* be the constant function whose value is *b*. Then *f* is continuous but not open because f(X) is not open in *Y*. On the other hand $g : X \to \{b\}$ is open, because $\{b\}$ is open in $\{b\}$. We may also choose *Y* so that $\{b\}$ is not closed in *Y* (e.g. $Y = \mathbb{R}$, where open subsets are only \emptyset and \mathbb{R} .) Then the constant *b* function *f* is continuous but not closed because f(X) is not closed.

But if f is open (resp. closed), then g is open (resp. closed) because if $C \subseteq X$ is open (resp. closed), then g(C) = f(C).

5d. Let X and Y be two topological spaces. Endow $X \times Y$ with the product topology. Let π : $X \times Y \to X$ be the first projection. Is π necessarily open? Is π necessarily closed? Prove or disprove.

Answer: π is not necessarily closed. For example, take $X = Y = \mathbb{R}$ with the usual topology and $C = \{(x, y) : xy = 1\}$. Then *C* is closed, but $\pi(C) = \mathbb{R} \setminus \{0\}$ is not closed. On the other hand π is open, because every open subset of $X \times Y$ is a union of sets of the form $U \times V$ where *U* and *V* are open in *X* and *Y* respectively, so that the image of an open subset of $X \times Y$ under π is the union of open subsets *U* that appear in its definition and is open.

5e. Find a continuous map $f : X \to X$ from a topological space X into itself which is not closed.

5f. Find a continuous map $f : X \to X$ from a topological space X into itself which is not open.

5g. Find a continuous map $f : X \to X$ from a topological space X into itself which is neither open nor closed.

Answer: Take $X = \mathbb{R}$ with its usual topology and $f(x) = 1/(1+x^2)$. Then $f(\mathbb{R}) = (0, 1]$ and is neither closed nor open.

5h. Find a closed function $f : X \to X$ from a topological space X into itself which is not continuous.

Answer: Take $X = \mathbb{R}$ and define f(x) = 0 if $x \le 0$ and f(x) = 1 if x > 0. Then *f* is closed but not continuous.

5i. Find an open function $f : X \to X$ from a topological space X into itself which is not continuous.

Answer: Let $X = \mathbb{R}^{\geq 0}$ with the usual topology. For $x \in \mathbb{R}$ let [x] denote the largest integer such that $[x] \leq x$. Let f(x) = x - [x] regarded as a function from X into X. Then f is open but not continuous.

5j. Let X, Y, Z be three topological spaces and $f: X \to Y$ and $g: Y \to Z$ be two functions. Show that if g o f is open (resp. closed) and g is continuous and surjective then g is open (resp. closed). Find the limitations of this result.

Proof: Let V be an open subset of Y. Let $U = f^{-1}(V)$. Then U is open because f is continuous and g(f(U)) is open because g o f is open. But since f is surjective f(U) = V. Hence g(V) = g(f(U)) is open. The rest is left to you.

5k. Let X, Y, Z be three topological spaces and $f: X \to Y$ and $g: Y \to Z$ be two functions. Show that if g o f is open (resp. closed) and if g is continuous and injective then f is open (resp. closed). Find the limitations of this result.

Proof: Let $U \subseteq X$ be an open subset. Then g(f(U)) is open because g o f is open and $g^{-1}(g(f(U)))$ is open because g is continuous. But $g^{-1}(g(V)) = V$ for all $V \subseteq Y$ because g is injective. Thus f(U) is open.

6. Let X and Y be topological spaces. Let $f : X \to Y$ be a function. Show that f is continuous and closed (see # 5) if and only if $f(\underline{A}) = \underline{f(A)}$ for every subset A of X. (Here \underline{A} denotes the closure of A).

Proof: Suppose *f* is continuous and closed. Let *A* be a subset of *X*. Then, since *f* is closed, $f(\underline{A})$ is closed, and since it contains f(A), $\underline{f(A)} \subseteq f(\underline{A})$. Since *f* is continuous, $f^{-1}(\underline{f(A)})$ is closed, and since it contains *A*, it also contains <u>A</u>. Hence $f(\underline{A}) \subseteq \underline{f(A)}$.

Conversely suppose that $f(\underline{A}) = \underline{f(A)}$ for every subset A of X. To show that f is continuous, it is enough to assume only that $\underline{f(A)} \subseteq \underline{f(A)}$ for all $A \subseteq X$. Indeed, let F be a closed subset of Y. Then $\underline{f(f^{-1}(F))} \subseteq \underline{f(f^{-1}(F))} \subseteq F = F$, so $\underline{f^{-1}(F)} \subseteq f^{-1}(F)$. This shows that $\underline{f^{-1}(F)} = f^{-1}(F)$ and $f^{-1}(F)$ is closed. This shows that f is continuous. Let now $A \subseteq X$ be closed. Then $\underline{f(A)} = \underline{f(A)} = \underline{f(A)}$ and so $\underline{f(A)}$ is closed.