Projective Planes
Ali Nesin
July 15th, 2000

0. Let \(q \) be a prime power. Find the orders of \(\text{GL}_n(q), \text{PGL}_n(q), \text{SL}_n(q), \text{PSL}_n(q) \).

I. Let \(F \) be a division ring (a noncommutative field) and let \(K \) be a subdivision ring of \(F \). Assume that \(F \), as a left vector space over \(K \), is three dimensional. We may then consider the classical (Desarguesian) projective plane \(\pi = \pi(F/K) \) over the three dimensional \(K \)-vector space \(F \). Recall that the points and the lines of \(\pi \) are the left \(K \)-subspaces of dimension 1 and 2 of the three dimensional \(K \)-vector space \(F \) and that the incidence relation is given by the inclusion relation.

Let \(\text{GL}(F/K) \) be the group of left \(K \)-vector space automorphisms of \(F \). Clearly, the group \(\text{GL}(K/F) \) induces the group \(\text{PGL}(K/F) \) of automorphisms of \(\pi \).

I1. Show that the points of \(\pi \) are in one-to-one correspondence with the left-coset space \(F^*/K^* \).

For \(f \in F^* \), define the map \(R_f : F \to F \) by \(R_f(x) = xf \).

I2. Show that \(R_f \in \text{GL}(F/K) \).

I3. Show that \(\{R_f : f \in F^*\} \) is a subgroup of \(\text{GL}(K/F) \) isomorphic to \(F^* \).

Each \(R_f \), being in \(\text{GL}(F/K) \), induces an automorphism \(PR_f \in \text{PGL}(F/K) \) of \(\pi \).

I4. Find the kernel of the group homomorphism \(f \mapsto PR_f \) from \(F^* \) into \(\text{PGL}(F/K) \).

I5a. Give an example of \(F \) and \(K \) where \(K \) is a field.

I5b. Can \(K \) be a field without \(F \) being a field?

I5c. What is the kernel of the group homomorphism of question #3 in case \(F \) is a field.

I5d. Find explicitly the groups and the automorphisms of the questions above in case \(\pi \) is the projective plane of order 8.

II. Show that every involutary automorphism of a projective plane is either a homology, an elation or a Baer automorphism.

III. Let \(\pi \) be a projective plane. Let \(\alpha \) be an involutary \((A, a)\)-homology and \(\beta \) be an involutary \((B, b)\)-homology such that \(A \) is on \(b \) and \(B \) is on \(a \), with \(A \neq B \). Show that \(\alpha \beta \) is an involutary \((ab, AB)\)-homology.