Projective Planes

Ali Nesin July 15th, 2000

0. Let q be a prime power. Find the orders of $GL_n(q)$, $PGL_n(q)$, $SL_n(q)$, $PSL_n(q)$.

I. Let *F* be a division ring (a noncomutative field) and let *K* be a subdivision ring of *F*. Assume that *F*, as a left vector space over *K*, is three dimensional. We may then consider the classical (Desarguesian) projective plane $\pi = \pi(F/K)$ over the three dimensional *K*-vector space *F*. Recall that the points and the lines of π are the left *K*-subspaces of dimension 1 and 2 of the three dimensional *K*-vector space *F* and that the incidence relation is given by the inclusion relation.

Let GL(F/K) be the group of left *K*-vector space automorphisms of *F*. Clearly, the group GL(K/F) induces the group PGL(K/F) of automorphisms of π .

I1. Show that the points of π are in one-to-one correspondance with the left-coset space F^*/K^* .

For $f \in F^*$, define the map $R_f : F \to F$ by $R_f(x) = xf$.

I2. Show that $R_f \in GL(F/K)$.

I3. Show that $\{R_f : f \in F^*\}$ is a subgroup of GL(K/F) isomorphic to F^* .

Each R_f , being in GL(F/K), induces an automorphism $PR_f \in PGL(F/K)$ of π .

I3. Find the kernel of the group homomorphism $f \mapsto PR_f$ from F^* into PGL(*F/K*).

I4. Show that the image of F^* under the above homomorphism acts regularly on the set of points of π .

I5a. Give an example of *F* and *K* where *K* is a field.

I5b. Can *K* be a field without *F* being a field?

I5c. What is the kernel of the group homomorphism of question #3 in case *F* is a field.

I5d. Find explicitly the groups and the automorphisms of the questions above in case π is the projective plane of order 8.

II. Show that every involutary automorphism of a projective plane is either a homology, an elation or a Baer automorphism.

III. Let π be a projective plane. Let α be an involutary (A, a)-homology and β be an involutary (B, b)-homology such that A is on b and B is on a, with $A \neq B$. Show that $\alpha\beta$ is an involutary (ab, AB)-homology.