Projective Planes

Final Exam

June $2^{\text {nd }}, 2000$
Ali Nesin
π always denotes a projective plane.
A correlation of π is a bijection α from the points of π onto the lines of π and from the lines of π onto the points of π such that a point A is on a line ℓ iff the point ℓ^{α} is on the line A^{α}. Clearly a projective plane has a correlation if and only if it is self-dual.

1. Let $\varphi \in \operatorname{Aut}(\pi)$ and α, β be correlations of π. Show that

1a. $\alpha \beta \in \operatorname{Aut}(\pi)$.
1b. $\alpha \varphi$ and $\varphi \alpha$ are correlations of π.
1c. Show that $\alpha \operatorname{Aut}(\pi)$ is the set of all correlations of π.
A polarity is a correlation of order 2.
2. Show that if K is a field, the projective plane $\pi_{2}(K)$ has a "canonical" polarity.

If α is a polarity of π, then a point A (resp. a line ℓ) is called absolute if A $\in A^{\alpha}$ (resp. $\ell^{\alpha} \in \ell$).

3a. Give an example of a projective plane π with a polarity that has absolute points.

3b. Give an example of a projective plane π with a polarity that has no absolute points.
4. Let α be a polarity of π. Show that every absolute point of π is on a unique absolute line and vice versae.
5. Show that a finite projective plane π has a polarity iff the points and lines of π can be labelled in such a way that the incidence matrix of π with respect to this labelling is symmetric. Show that this labelling can be done in such a way that the number of ones on the diagonal (i.e. the trace of the incidence matrix) corresponds to the number of absolute points of the polarity.
6. Let F be a field. Let i be a new symbol. Define

$$
F[i]=F \oplus F i=\{x+y i: x, y \in F\}
$$

artificially/formally. Define the addition and the multiplication by mimicing the complex numbers.

6a. Show that this may not always define a field structure.
6b. Show that the "norm" map N defined by $N(x+y i)=x^{2}+y^{2}$ from the above algebraic structure into F is multiplicative.

6c. Let $\Delta=\{z \in F[i]: N(z)=0\}$. If $F=\mathbf{F}_{q}$ (a finite field) compute the cardinality of Δ.

6d. Show that $F[i] \backslash \Delta$ is a group under the multiplication.
6e. What is the order of $F_{q}[i] \backslash \Delta$?
6f. Show that in a field F, the set $\left\{x^{2}+y^{2}: x, y \in F\right\} \backslash\{0\}$ form a multiplicative subgroup containing the set of nonzero squares $F^{* 2}$.

6g. Show that in a finite field, every element is a sum of two squares, i.e. that the multiplicative map N is onto.

6h. Find the cardinality of the set $\left\{(x, y) \in \mathbf{F}_{q}{ }^{2}: x^{2}+y^{2}=1\right\}$.
6i. Find the cardinality of the set $\left\{(x, y) \in \mathbf{F}_{q}{ }^{2}: x^{2}+y^{2}=-1\right\}$.
6j. Show that $\pi\left(\mathbf{F}_{q}\right)$ has a polarity (the canonical polarity would do) with at least $q+1$ absolute points.

Discussion: It is not known whether a self-dual projective plane should necessarily have a polarity. It can be shown that a polarity on a finite projective plane of order n has at least $n+1$ absolute points.

