Projective Planes

Midterm 5 Nisan 2000

1. Let π be a projective plane. Let α be an involutary (A, a)-homology and β be an involutary (B, b)-homology such that A is on b and B is on a, with $A \neq B$. We will show that $\alpha\beta$ is an involutary (ab, AB)-homology.

1a. Show that $\alpha\beta$ fixes the points *A*, *B* and *ab*.

1b. Show that $\alpha\beta$ is an involution (Hint: $(\alpha\beta)^2$ fixes all the points of $a \cup b$).

1c. Show that $\alpha\beta$ cannot be an elation.

1d. Show that $Fix(\alpha\beta) \cap \mathcal{D}(a) = \{B, ab\}.$

1e. Show that $\alpha\beta$ cannot be a Baer collineation.

1f. Show that $\alpha\beta$ is an involutary (*ab*, *AB*)-homology.

2. Let *G* be a group and let *A* and *B* be two subgroups of *G*. We define an incidence geometry $\pi = \pi(G, A, B)$ as follows:

The points of π are the left cosets *xA* of *A* in *G*.

The lines of π are the left cosets *yB* of *B* in *G*.

A point *xA* is on a line *yB* iff $xA \cap yB \neq \emptyset$.

2a. Find the set $\mathcal{P}(B)$ of points of the line *B*. Find the set of points $\mathcal{P}(yB)$ of the line *yB*. Find the set of lines $\mathcal{L}(xA)$ through the point *xA*.

2b. Show that the action of *G* on $\mathcal{P}(\pi)$ and on $\mathcal{L}(\pi)$ by left multiplication gives rise to automorphisms of the incidence geometry π and that this action is transitive on $\mathcal{P}(\pi)$, and also on $\mathcal{L}(\pi)$.

2c. When is the action of G on the set $\mathcal{P}(\pi)$ of points of π faithful? The same question for the set $\mathcal{L}(\pi)$ of lines of π .

2d. Show that *G* acts transitively on the set $\mathfrak{I}(\pi) = \{(P, \ell) : P \in \ell\}$ of flags of π . Show that this action is regular iff $A \cap B = 1$.

2e. Show that the stabilizer of the point *A* of π is *A*.

2f. Show that any two distinct lines of π intersect if and only if G = BAB.

2g. Show that a line passes through any two distinct points if and only if G = ABA.

2h. Find the necessary and sufficient conditions on G, A and B so that π is a projective plane.