Projective Planes

Midterm
5 Nisan 2000

1. Let π be a projective plane. Let α be an involutary (A, a)-homology and β be an involutary (B, b)-homology such that A is on b and B is on a, with $A \neq B$. We will show that $\alpha \beta$ is an involutary ($a b, A B$)-homology.

1a. Show that $\alpha \beta$ fixes the points A, B and $a b$.
1b. Show that $\alpha \beta$ is an involution (Hint: $(\alpha \beta)^{2}$ fixes all the points of $a \cup b$).
1c. Show that $\alpha \beta$ cannot be an elation.
1d. Show that $\operatorname{Fix}(\alpha \beta) \cap \wp(a)=\{B, a b\}$.
1e. Show that $\alpha \beta$ cannot be a Baer collineation.
1f. Show that $\alpha \beta$ is an involutary $(a b, A B)$-homology.
2. Let G be a group and let A and B be two subgroups of G. We define an incidence geometry $\pi=\pi(G, A, B)$ as follows:

The points of π are the left cosets $x A$ of A in G.
The lines of π are the left cosets $y B$ of B in G.
A point $x A$ is on a line $y B$ iff $x A \cap y B \neq \varnothing$.
2a. Find the set $\wp(B)$ of points of the line B. Find the set of points $\wp(y B)$ of the line $y B$. Find the set of lines $\mathscr{L}(x A)$ through the point $x A$.

2b. Show that the action of G on $\wp(\pi)$ and on $\mathscr{L}(\pi)$ by left multiplication gives rise to automorphisms of the incidence geometry π and that this action is transitive on $\wp(\pi)$, and also on $\mathscr{L}(\pi)$.

2c. When is the action of G on the set $\wp(\pi)$ of points of π faithful? The same question for the set $\mathscr{L}(\pi)$ of lines of π.

2d. Show that G acts transitively on the set $\mathfrak{J}(\pi)=\{(P, \ell): P \in \ell\}$ of flags of π. Show that this action is regular iff $A \cap B=1$.

2e. Show that the stabilizer of the point A of π is A.
2f. Show that any two distinct lines of π intersect if and only if $G=B A B$.
2g. Show that a line passes through any two distinct points if and only if $G=$ ABA.

2h. Find the necessary and sufficient conditions on G, A and B so that π is a projective plane.

