Math 281

Midterm
Kasım 1998
Ali Nesin

1. Does the ring $\mathbb{R}[X] /<X^{2}-1>$ have zerodivisors? Find them. Find its units.

2a. Show that a finite field has p^{n} elements for some prime p and some $n>0$. (Hint: A field is a vector space over its prime field).

2b. Show that in a finite field with p^{n} elements, $x^{p^{n}}=x$ for all x.
2c. Show that in a finite field with p^{n} elements where p is odd, there are $\frac{p^{n}-1}{2}$ many elements with a square root.

2d. Let F be a finite field of characteristic p (a prime). Show that $x \rightarrow x^{p}$ is an automorphism of F.
3. Show that the polynomial $f(x)=x^{4}+x+1$ is irreducible over \mathbf{F}_{2}.

3a. Find a field over which f is reducible.
3b. Show that if f is reducible over a field F, then one of the following polynomials has a root in $F: x^{4}+x+1, x^{2}+1, x^{2}-2, x^{2}+2$.

3c. Find the elements of $\mathbf{F}_{2}[X] /<X^{4}+X+1>$. Show its multiplication table.
4. Let $V=\{(x-y+z+t, x+y+z+t, z+t, x+z+t): x, y, z, t \in \mathbb{R}\} . V$ is clearly a vector space over the field \mathbb{R}. What is its dimension? Find a basis of V. Complete this basis to a basis of \mathbb{R}^{4}.

