Math 211

Algebra
First Midterm
November 2000
Ali Nesin
G always denotes a group.
1a. Let R be a (not necessarily commutative) ring with 1 . Show that the set R^{*} of invertible elements of R form a group under multiplication. (2 pts .)

1b. Find the set $(\mathbb{Z} / 24 \mathbb{Z})^{*}$ and draw its multiplication table. ($4+4$ pts.)
1d. Find $\left(\mathbb{R}[X] /\left\langle X^{3}\right\rangle\right)^{*}$ explicitely and show that it is isomorphic to the following group of matrices ($8+8$ pts.):

$$
\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right): a, b \in \mathrm{R}\right\}
$$

2. Let R be a commutative ring and $I \triangleleft R$ an ideal. Define

$$
\sqrt{ } I=\left\{r \in R: r^{n} \in I \text { for some integer } n\right\}
$$

Show that $\sqrt{ } I$ is an ideal of R. (5 pts.)
3. Let H be a subgroup of index 2 of G (i.e. $|G / H|=2$). Show that $H \triangleleft G$. (6 pts.)
4. Let H and K be two subgroups of G. Show that for x and y in $G, x H \cap y K$ either is empty or a coset of $H \cap K$. (10 pts.)

5a. Let A and B be two groups. Assume B is abelian. Let $\operatorname{End}(A, B)$ be the set of group endomorphisms from A into B. For $f, g \in \operatorname{Hom}(A, B)$ define $f+g$ by the rule

$$
(f . g)(a)=f(a) g(a) \quad(a \in A)
$$

Show that the set of group endomorphisms $\operatorname{Hom}(A, B)$ from A into B form an abelian group under the addition of functions. (4 pts .)

5b. Let n and m be two integers >0. Show that $\operatorname{Hom}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z}) \approx m^{\prime} \mathbb{Z} / m \mathbb{Z} \approx \mathbb{Z} / d \mathbb{Z}$ where $m^{\prime}=m / d$ and $d=\operatorname{gcd}(m, n)$. $(8+8$ pts. $)$

Hint: $\mathbb{Z} / n \mathbb{Z}$ is cyclic and generated by 1 , this means that any endomorphism $\varphi \in$ $\operatorname{End}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z})$ is determined by its image $\varphi(1) \in \mathbb{Z} / m \mathbb{Z}$.
6. Let G be a group. Two elements g and h of G are said to be conjugate if $g^{x}:=x^{-1} g x=h$ for some $x \in G$. For $g \in G$, we let the centralizer of g to be:

$$
\mathrm{C}_{G}(g)=\{x \in G: g x=x g\} .
$$

6a. Show that to be conjugate is an equivalence relation. (4 pts.)
The class of g is called the conjugacy class of g and is denoted by g^{G}. Thus

$$
g^{G}=\left\{g^{x}: x \in G\right\} .
$$

6b. Show that $\mathrm{C}_{G}(g) \leq G$. (3 pts.)
6c. Let $G / \mathrm{C}_{G}(g)$ denote the the right coset space of $\mathrm{C}_{G}(g)$ in G. Show that the map
$\mathrm{C}_{G}(g) x \mapsto g^{x}$ is a well-defined bijection between $G / \mathrm{C}_{G}(g)$ and g^{G}. (6 pts.)
$\mathbf{6 d}$. $\operatorname{Sym}(n)$ denotes the set of all bijections of the set $\{1,2, \ldots, n\}$ and is called the symmetric group on n. An element of $\operatorname{Sym}(n)$ is called a transposition if it interchanges two distinct elements i and j of the set $\{1,2, \ldots, n\}$ and fixes all the rest. Such a transposition is denoted (i, j) or (j, i). Show that the set of transpositions of $\operatorname{Sym}(n)$ is one conjugacy class. (8 pts.)

6e. Compute the order of the centralizer $\mathrm{C}_{\operatorname{Sym}(n)}(12)$ of the element (1, 2). (4 pts.)
6f. Show that $\mathrm{C}_{\mathrm{Sym}(n)}(12) \approx \mathbb{Z} / 2 \mathbb{Z} \times \operatorname{Sym}(n-2)$. (8 pts .)

