Math 211 Algebra First Midterm November 2000 Ali Nesin

G always denotes a group.

1a. Let *R* be a (not necessarily commutative) ring with 1. Show that the set R^* of invertible elements of *R* form a group under multiplication. (2 pts.)

1b. Find the set $(\mathbb{Z}/24\mathbb{Z})^*$ and draw its multiplication table. (4 + 4 pts.)

1d. Find $(\mathbb{R} [X]/\langle X^3 \rangle)^*$ explicitly and show that it is isomorphic to the following group of matrices (8 + 8 pts.):

$$\left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \mathbf{R} \right\}$$

2. Let *R* be a commutative ring and $I \triangleleft R$ an ideal. Define

 $\sqrt{I} = \{r \in R : r^n \in I \text{ for some integer } n\}$

Show that \sqrt{I} is an ideal of *R*. (5 pts.)

3. Let *H* be a subgroup of index 2 of *G* (i.e. |G/H| = 2). Show that $H \triangleleft G$. (6 pts.)

4. Let *H* and *K* be two subgroups of *G*. Show that for *x* and *y* in *G*, $xH \cap yK$ either is empty or a coset of $H \cap K$. (10 pts.)

5a. Let *A* and *B* be two groups. Assume *B* is abelian. Let End(A, B) be the set of group endomorphisms from *A* into *B*. For $f, g \in Hom(A, B)$ define f + g by the rule

$$(f \cdot g)(a) = f(a)g(a)$$
 $(a \in A).$

Show that the set of group endomorphisms Hom(A, B) from A into B form an abelian group under the addition of functions. (4 pts.)

5b. Let *n* and *m* be two integers > 0. Show that $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \approx m'\mathbb{Z}/m\mathbb{Z} \approx \mathbb{Z}/d\mathbb{Z}$ where m' = m/d and $d = \operatorname{gcd}(m, n)$. (8 + 8 pts.)

Hint: $\mathbb{Z}/n\mathbb{Z}$ is cyclic and generated by 1, this means that any endomorphism $\varphi \in$ End $(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ is determined by its image $\varphi(1) \in \mathbb{Z}/m\mathbb{Z}$.

6. Let *G* be a group. Two elements *g* and *h* of *G* are said to be **conjugate** if $g^x = x^{-1}gx = h$ for some $x \in G$. For $g \in G$, we let the **centralizer** of *g* to be:

$$\mathbb{C}_G(g) = \{ x \in G : gx = xg \}.$$

6a. Show that to be conjugate is an equivalence relation. (4 pts.)

The class of g is called the **conjugacy class** of g and is denoted by g^{G} . Thus

$$g^G = \{g^x : x \in G\}.$$

6b. Show that $C_G(g) \leq G$. (3 pts.)

6c. Let $G/C_G(g)$ denote the right coset space of $C_G(g)$ in G. Show that the map

 $C_G(g)x \mapsto g^x$ is a well-defined bijection between $G/C_G(g)$ and g^G . (6 pts.)

6d. Sym(*n*) denotes the set of all bijections of the set $\{1, 2, ..., n\}$ and is called the **symmetric group** on *n*. An element of Sym(*n*) is called a **transposition** if it interchanges two distinct elements *i* and *j* of the set $\{1, 2, ..., n\}$ and fixes all the rest. Such a transposition is denoted (i, j) or (j, i). Show that the set of transpositions of Sym(*n*) is one conjugacy class. (8 pts.)

6e. Compute the order of the centralizer $C_{Sym(n)}(1 \ 2)$ of the element (1, 2). (4 pts.)

6f. Show that $C_{\text{Sym}(n)}(1 \ 2) \approx \mathbb{Z}/2\mathbb{Z} \times \text{Sym}(n-2)$. (8 pts.)