Math 411. Field Theory Final Exam, Jan. 2009 Ali Nesin

First Part

- 1. Let $K \le L \le K[\alpha]$ where α is algebraic over *K*.
- **1a.** Show that $L = K[\beta]$ for some β .

1b. Let $x^n + a_{n-1}x^{n-1} + ... + a_0$ be the minimal monic polynomial of α over L. Show that $L = K[a_0, ..., a_{n-1}]$.

- **2.** Show that for any field *K* of characteristic p > 0, $[K(x) : K(x^p)] = p$. (Here K(x) is the transcendantal extension of *K*.)
- **3.** Let *K* be a field of characteristic p > 0. Let M = K(x, y) and $L = K(x^p, y^p)$. Show that $[M : L] = p^2$ and that $[L(\alpha) : L] = p$ for any $\alpha \in M \setminus L$.
- 4. Let $p \in \mathbb{Z}$ be a prime. Let K be the splitting field of $x^5 p^2 x + p$ over \mathbb{Q} . Find $\operatorname{Gal}(K/\mathbb{Q})$.
- 5. Let *K* be the splitting field of $x^5 + x^2 x + 1$ over \mathbb{Q} . Find Gal(*K*/ \mathbb{Q}).
- 6. Let *K* be a field. Let $\Sigma = \{f : K \to K : f \text{ is multiplicative}\}$. Show that Σ is a linearly independent set in the *K*-vector space of functions from *K* into *K*.

Second Part. Below, $K \le F$ symbolizes a field extension of characteristic p > 0.

- 7. Find the kernel of the group endomorphism $x \mapsto x^p x$ of F^+ .
- 8. Let $\alpha \in F$ and $a = \alpha^p \alpha$. Show that all the roots of $x^p x a$ are in F and find them.
- **9.** Let $a \in K$. Show that if the polynomial $x^p x a$ has no roots in *K* then it is irreducible over *K*.
- **10.** Let $a \in K$ be such that the polynomial $f(x) = x^p x a$ has no roots in *K*. Assume $F = K(\alpha)$ where α is a root of *f*.
 - **a**) Show that *F* is a splitting field of *f* over *K*.
 - **b**) Show that *F*/*K* is a Galois extension.
 - c) Show that there is an automorphism σ of *F* over *K* such that $\sigma(\alpha) = \alpha + 1$.
 - **d**) Show that $Gal(F/K) = \langle \sigma \rangle$ and has order *p*.
- **11.** Let *F*/*K* be Galois. Let G = Gal(F/K). For $\alpha \in F$ define define the *trace* of α over *K* as follows:

$$T(\alpha) = \sum_{\sigma \in G} \sigma(\alpha)$$
.

Then T is clearly an endomorphism of F^+ .

- **a**) What is $T(\alpha)$ for $\alpha \in K$?
- **b**) Show that $T(F) \subseteq K$.
- c) When can we have T(K) = 0?
- **d**) Show that $T \neq 0$.
- **e**) Show that $T(\alpha \sigma(\alpha)) = 0$ for all $\sigma \in G$ and $\alpha \in F$.
- **12.** Let *F*/*K* be a cyclic Galois extension of degree *p*. Let $Gal(F/K) = \langle \sigma \rangle$. Let $\alpha \in F$ be such that $\sigma(\alpha) = \alpha + 1$. Let $a = \alpha^p \alpha$.
 - **a**) Show that $a \in K$.
 - **b**) Show that $x^p x a$ is the monic irreducible polynomial of α over *K*.
 - **c**) Show that $F = K(\alpha)$.
- **13.** Let *F*/*K* be a cyclic Galois extension. Let $G = \text{Gal}(F/K) = \langle \sigma \rangle$. Assume |G| = n. Let $\beta \in F$ be such that $T(\beta) = 0$. Set $\gamma_i = \beta + \sigma(\beta) + ... + \sigma^i(\beta)$. Let $\gamma \in F$ with $T(\gamma) \neq 0$ (show that such an element exists). Let

 $\alpha = T(\gamma)^{-1}(\gamma_0\gamma + \gamma_1\sigma(\gamma) + \dots + \gamma_{n-1}\sigma^{n-1}(\gamma)).$ Check that $\beta = \alpha - \sigma(\alpha)$. Conclude that for an element $\beta \in F$, $T(\beta) = 0$ iff $\beta = \alpha - \sigma(\alpha)$ for some $\alpha \in F$.

14. Let F/K be an extension of degree p. Show that F/K is a cyclic Galois extension iff there exists an $\alpha \in F$ whose minimal polynomial is of the form $x^p - x - a$ for some $a \in F$ *K* and such that $F = K(\alpha)$.