First Part

1. Let $K \leq L \leq K[\alpha]$ where α is algebraic over K.

1a. Show that $L=K[\beta]$ for some β.
1b. Let $x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ be the minimal monic polinomial of α over L. Show that $L=$ $K\left[a_{0}, \ldots, a_{n-1}\right]$.
2. Show that for any field K of characteristic $p>0,\left[K(x): K\left(x^{p}\right)\right]=p$. (Here $K(x)$ is the transcendantal extension of K.)
3. Let K be a field of characteristic $p>0$. Let $M=K(x, y)$ and $L=K\left(x^{p}, y^{p}\right)$. Show that $[M$ $: L]=p^{2}$ and that $[L(\alpha): L]=p$ for any $\alpha \in M \backslash L$.
4. Let $p \in \mathbb{Z}$ be a prime. Let K be the splitting field of $x^{5}-p^{2} x+p$ over \mathbb{Q}. Find $\operatorname{Gal}(K / \mathbb{Q})$.
5. Let K be the splitting field of $x^{5}+x^{2}-x+1$ over \mathbb{Q}. Find $\operatorname{Gal}(K / \mathbb{Q})$.
6. Let K be a field. Let $\Sigma=\{f: K \rightarrow K: f$ is multiplicative $\}$. Show that Σ is a linearly independent set in the K-vector space of functions from K into K.

Second Part. Below, $K \leq F$ symbolizes a field extension of characteristic $p>0$.
7. Find the kernel of the group endomorphism $x \mapsto x^{p}-x$ of F^{+}.
8. Let $\alpha \in F$ and $a=\alpha^{p}-\alpha$. Show that all the roots of $x^{p}-x-a$ are in F and find them.
9. Let $a \in K$. Show that if the polinomial $x^{p}-x-a$ has no roots in K then it is irreducible over K.
10. Let $a \in K$ be such that the polinomial $f(x)=x^{p}-x-a$ has no roots in K. Assume $F=$ $K(\alpha)$ where α is a root of f.
a) Show that F is a splitting field of f over K.
b) Show that F / K is a Galois extension.
c) Show that there is an automorphism σ of F over K such that $\sigma(\alpha)=\alpha+1$.
d) Show that $\operatorname{Gal}(F / K)=\langle\sigma\rangle$ and has order p.
11. Let F / K be Galois. Let $G=\operatorname{Gal}(F / K)$. For $\alpha \in F$ define define the trace of α over K as follows:

$$
T(\alpha)=\sum_{\sigma \in G} \sigma(\alpha)
$$

Then T is clearly an endomorphism of F^{+}.
a) What is $T(\alpha)$ for $\alpha \in K$?
b) Show that $T(F) \subseteq K$.
c) When can we have $T(K)=0$?
d) Show that $T \neq 0$.
e) Show that $T(\alpha-\sigma(\alpha))=0$ for all $\sigma \in G$ and $\alpha \in F$.
12. Let F / K be a cyclic Galois extension of degree p. Let $\operatorname{Gal}(F / K)=\langle\sigma\rangle$. Let $\alpha \in F$ be such that $\sigma(\alpha)=\alpha+1$. Let $a=\alpha^{p}-\alpha$.
a) Show that $a \in K$.
b) Show that $x^{p}-x-a$ is the monic irreducible polynomial of α over K.
c) Show that $F=K(\alpha)$.
13. Let F / K be a cyclic Galois extension. Let $G=\operatorname{Gal}(F / K)=\langle\sigma\rangle$. Assume $|G|=n$. Let β $\in F$ be such that $T(\beta)=0$. Set $\gamma_{i}=\beta+\sigma(\beta)+\ldots+\sigma^{i}(\beta)$. Let $\gamma \in F$ with $T(\gamma) \neq 0$ (show that such an element exists). Let

$$
\alpha=T(\gamma)^{-1}\left(\gamma_{0} \gamma+\gamma_{1} \sigma(\gamma)+\ldots+\gamma_{n-1} \sigma^{n-1}(\gamma)\right)
$$

Check that $\beta=\alpha-\sigma(\alpha)$. Conclude that for an element $\beta \in F, T(\beta)=0$ iff $\beta=\alpha-\sigma(\alpha)$ for some $\alpha \in F$.
14. Let F / K be an extension of degree p. Show that F / K is a cyclic Galois extension iff there exists an $\alpha \in F$ whose minimal polynomial is of the form $x^{p}-x-a$ for some $a \in$ K and such that $F=K(\alpha)$.

