Number Theory

(Math 281)
Final Exam
January 1999
Ali Nesin \& Özlem Beyarslan
I. Recall that we proved in class that if p is an odd prime and n any integer, then $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ is cyclic.
a. What is the order of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ if p is a prime?
b. Show that 2 is a generator of $(\mathbb{Z} / 9 \mathbb{Z})^{*},(\mathbb{Z} / 125 \mathbb{Z})^{*}$.
c. Find an odd prime p such that 2 is not a generator of $(\mathbb{Z} / p \mathbb{Z})^{*}$.
d. Show that $(\mathbb{Z} / 2 \mathbb{Z})^{*}$ and $(\mathbb{Z} / 4 \mathbb{Z})^{*}$ are cyclic.
e. Show that $(\mathbb{Z} / 8 \mathbb{Z})^{*}$ is not cyclic.
f. Show that $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{*}$ is cyclic if and if $n=0,1$ or 2 .
g. For what numbers m is $(\mathbb{Z} / m \mathbb{Z})^{*}$ cyclic?
II.
a. Is 4031 a square modulo 4013 ? (4013 is a prime and $4031=29 \times 139$).
b. For what primes p is 2 a square in the prime field \mathbf{F}_{p} ?
III. Show that $\boldsymbol{F}_{p^{m}}$ is a subfield of $\boldsymbol{F}_{p^{n}}$ if and only if m divides n.

IV.

a. Let p be any odd prime. Show that every element of \mathbf{F}_{p} is a square in the field $\boldsymbol{F}_{p^{2}}$. (Hint: Up to isomorphism, there is only one field of a given finite cardinality).
b. Show that 2 is a square in the field $\boldsymbol{F}_{p^{n}}$ (p odd) iff either 2 is a square in \mathbf{F}_{p} or n is even. (Hint: Use IVa and II).

