Number Theory

(Math 281) Final Exam January 1999 Ali Nesin & Özlem Beyarslan

I. Recall that we proved in class that if *p* is an odd prime and *n* any integer, then $(\mathbb{Z}/p^n\mathbb{Z})^*$ is cyclic.

a. What is the order of $(\mathbb{Z}/p^n\mathbb{Z})^*$ if *p* is a prime?

b. Show that 2 is a generator of $(\mathbb{Z}/9\mathbb{Z})^*$, $(\mathbb{Z}/125\mathbb{Z})^*$.

c. Find an odd prime *p* such that 2 is not a generator of $(\mathbb{Z}/p\mathbb{Z})^*$.

d. Show that $(\mathbb{Z}/2\mathbb{Z})^*$ and $(\mathbb{Z}/4\mathbb{Z})^*$ are cyclic.

e. Show that $(\mathbb{Z}/8\mathbb{Z})^*$ is not cyclic.

f. Show that $(\mathbb{Z}/2^n\mathbb{Z})^*$ is cyclic if and if n = 0, 1 or 2.

g. For what numbers *m* is $(\mathbb{Z}/m\mathbb{Z})^*$ cyclic?

II.

a. Is 4031 a square modulo 4013? (4013 is a prime and 4031 = 29×139). **b.** For what primes *p* is 2 a square in the prime field \mathbf{F}_p ?

III. Show that F_{p^m} is a subfield of F_{p^n} if and only if *m* divides *n*.

IV.

a. Let *p* be any odd prime. Show that every element of \mathbf{F}_p is a square in the field \mathbf{F}_p^2 . (Hint: Up to isomorphism, there is only one field of a given finite cardinality).

b. Show that 2 is a square in the field \mathbf{F}_{p^n} (*p* odd) iff either 2 is a square in \mathbf{F}_p or *n* is even. (**Hint:** Use IVa and II).