Math 231: Linear Algebra I Final

Ali Nesin

January 2008

1. Let V be a finite dimensional vector space. Let $A, B \in \operatorname{End} V$ be such that $A B=\operatorname{Id}_{V}$. Show that $B A=\mathrm{Id}_{V}$. Show that this is false if V is infinite dimensional. (5 pts .)
Proof: Clearly B is one to one. Hence it is also onto. Since V is finite dimensional, B is then invertible. Let C be the inverse of B. Since $A B=\mathrm{Id}_{V}=C B$, we have $(A-C) B=0$. Since B is invertible, it follows that $A=C=B^{-1}$. Therefore $B A=B B^{-1}=\operatorname{Id}_{V}$. If V is infinite dimensional this is false. Indeed let $V=K[X]$ and A and B be defined by $A(f)=$ $(f-f(0)) / X$ and $B(f)=X f$.
2. Let V be a vector space of dimension $n<\infty$. A sequence $V_{0}<\ldots<V_{k}$ of subspaces of V is called a flag and k is called the length of that flag.
2a. What is the maximal possible length of a flag? Construct a flag of maximal length (3 pts.)

Answer: Since $0 \leq \operatorname{dim} V_{0}<\ldots<\operatorname{dim} V_{k} \leq \operatorname{dim} V=n$, we must have $k \leq n$. If v_{1}, \ldots, v_{n} is a basis of V, for each $i=1, \ldots, n$ set $V_{i}=\left\langle v_{1}, \ldots, v_{i}\right\rangle$. Then $\left(V_{i}\right)_{i}$ is a flag of length n.

2b. Show that $\mathrm{GL}(V)$ acts naturally on the set of flags of length k. (2 pts .)
Proof: Any flag is of course sent to a flag by an element of GL(V).
3. Let V be a vector space of dimension $n<\infty$. Let v_{1}, \ldots, v_{n} be a basis of V. For $\alpha \in$ $\operatorname{Sym}(n)$, define $f(\alpha)=f_{\alpha} \in \operatorname{GL}(V)$ in such a way that $f_{\alpha}\left(v_{i}\right)=v_{\alpha(i)}$ for all $i=1, \ldots, n$.
3a. Why such an $f(\alpha)$ must exist? (2 pts.)
Answer: Because v_{1}, \ldots, v_{n} form a basis of V.
3b. Show that f is a group homomorphism from $\operatorname{Sym}(n)$ into $\operatorname{GL}(V)$. (3 pts.)
Proof: Let $\alpha, \beta \in \operatorname{Sym} n$. Since $f_{\alpha \beta}\left(v_{i}\right)=v_{\alpha \beta(i)}=f_{\alpha}\left(v_{\beta(i)}\right)=f_{\alpha} f_{\beta}\left(v_{i}\right)$ for all i, we have $f_{\alpha \beta}(v)=f_{\alpha} f_{\beta}(v)$ for all $v \in V$. Hence $f_{\alpha \beta}=f_{\alpha} f_{\beta}$.
4. Let V be a vector space of dimension n and W be a subspace of dimension k. It must be clear that $A:=\{g \in \operatorname{End}(V): g W \leq W\}$ is a vector space. Find its dimension. (6 pts.)
Proof: Choose a basis w_{1}, \ldots, w_{k} of W and complete it to basis of V by adding v_{k+1}, \ldots, v_{n}. An element of A is determined by what it does to this basis. Each of the w_{i} 's must go to a linear combination of w_{1}, \ldots, w_{k} and this adds k^{2} to the basis. Each of the v_{j} 's must go to a linear combination of $w_{1}, \ldots, w_{k}, v_{k+1}, \ldots, v_{n}$.and this adds $(n-k) n$ to the basis. Thus $\operatorname{dim}_{K} A=k^{2}+(n-k) n=n^{2}-n k+k^{2}$.
5. Let V be a vector space of dimension $n<\infty$. Let v_{1}, \ldots, v_{n} be a basis of V. For each $i=$ $1, \ldots, n$ let $V_{i}=\left\langle v_{1}, \ldots, v_{i}\right\rangle$. Let $A=\left\{g \in \operatorname{End}_{K}(V): g V_{i} \leq V_{i}\right.$ for all $\left.i=1, \ldots, n\right\}$. It must be clear that A is an algebra over K. Find $\operatorname{dim}_{K}(A)$. (4 pts.)
Proof: For each $i, g\left(v_{i}\right)$ must be a linear combination of v_{1}, \ldots, v_{i}. Hence $\operatorname{dim} A=1+2$ $+\ldots+n=n(n+1) / 2$.
6. Let V be a vector space of dimension $n<\infty$ over a field K. For a positive integer k and a map f from $V^{k}=V \times \ldots \times V$ into K is called k-multilinear if f is linear in each coordinate. Let $E_{k}(V)$ be the set of k-multilinear maps of V. $E_{k}(V)$ is a vector space.
6a. What is $\operatorname{dim} E_{k}(V)$? (6 pts.)
Proof: Let v_{1}, \ldots, v_{n} be a basis of V. An element of $E_{k}(V)$ is determined by what it does to the set $\left\{\left(v_{i_{1}}, \ldots, v_{i_{k}}\right): i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}\right\}$. Thus $\operatorname{dim} E_{k}(V)=n^{k}$.

6b. A k-multilinear map f from $V \times \ldots \times V$ into K is called k-alternating if for any w_{1}, $\ldots, w_{k} \in V, f\left(w_{1}, \ldots, w_{k}\right)=0$ whenever $w_{i}=w_{j}$ for two distinct i and j. Let $A_{k}(V)$ be the set of k-alternating maps of V. Then $A_{k}(V)$ is a vector space. Show that for any w_{1}, \ldots, $w_{k} \in V, f \in A_{k}(V)$ and any $\sigma \in \operatorname{Sym} k$,

$$
f\left(w_{\sigma(1)}, \ldots, w_{\sigma(k)}\right)=\operatorname{sg}(\sigma) f\left(w_{1}, \ldots, w_{k}\right) .
$$

(Here $\operatorname{sg}(\sigma)$ is the signature of σ, i.e. is 1 or -1 , depending on whether $\sigma \in$ Alt n or not, in other words, $\operatorname{sg}(\sigma)=(-1)^{\ell}$ where ℓ is the number of transpositions whose product is σ). (6 pts .)
6c. What is $\operatorname{dim} A_{k}(V)$? (10 pts.)
Answer and Proof: Let v_{1}, \ldots, v_{n} be a basis of V. Using $8 \mathbf{b}$, it is easily seen that an element of $A_{k}(V)$ is determined by what it does to the set

$$
\left\{\left(v_{i_{1}}, \ldots, v_{i_{k}}\right): 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}
$$

which is in bijection with the set of k-subsets of $\{1, \ldots, n\}$. Thus $\operatorname{dim} A_{k}(V)=\binom{n}{k}$. It follows that $\operatorname{dim} A_{k}(V)=0$ if $k>n$ and $\operatorname{dim} A_{n}(V)=1$.
7. Let V be a vector space and W be a subspace of V.

7a. Let $\left(w_{i}\right)_{i \in I} \cup\left(v_{j}\right)_{j \in J}$ be a basis of V such that $\left(w_{i}\right)_{i \in I}$ is a basis of W. Show that $\left(\overline{v_{j}}\right)_{j \in J}$ is a basis of V / W. (3 pts.)
Proof: First the linear independence: Assume $\sum_{j} \alpha_{j} \overline{v_{j}}=\overline{0}$. Then $\overline{\sum_{j} \alpha_{j} v_{j}}=\overline{0}$ and so $\sum_{j} \alpha_{j} v_{j} \in W$. Since $\left(w_{i}\right)_{i \in I} \cup\left(v_{j}\right)_{j \in J}$ be a basis of V, this shows that $\alpha_{j}=0$ for all j. That $\left(\overline{v_{j}}\right)_{j \in J}$ generates V / W is much easier.
7b. Let $\left(w_{i}\right)_{i \in I}$ be a basis of W. Let $\left(v_{j}\right)_{j \in J}$ be such that $\left(\overline{v_{j}}\right)_{j \in J}$ is a basis of V / W. Show that $\left(w_{i}\right)_{i \in I} \cup\left(v_{j}\right)_{j \in J}$ be a basis of V. (3 pts.)
Proof: First the linear independence: Assume $\sum_{i} \alpha_{i} w_{i}+\sum_{j} \beta_{j} v_{j}=0$. Taking modulo W we get $\sum_{j} \beta_{j} \overline{v_{j}}=\overline{0}$. Since $\left(\overline{v_{j}}\right)_{j \in J}$ is a basis of V / W, we get $\beta_{j}=0$ all j. Hence $\sum_{i} \alpha_{i} w_{i}=\sum_{i} \alpha_{i} w_{i}+\sum_{j} \beta_{j} v_{j}=0$ and since $\left(w_{i}\right)_{i \in I}$ be a basis of W we get $\alpha_{i}=0$ all i. Generating: Let $v \in V$. Then $\bar{v}=\sum_{j} \alpha_{j} \overline{v_{j}}$ for some α_{i}. Then $\bar{v}-\sum_{j} \alpha_{j} \overline{v_{j}} \in W$ and the rest is easy.
8. Let V be a vector space and $W \leq V$. Let $g \in \operatorname{GL}(V)$.

8a. Show that g induces naturally an isomorphism from $V / g^{-1}(W)$ onto V / W. (4 pts.)
Proof: Define $\bar{g}: V / g^{-1}(W) \rightarrow V / W$ via $\bar{g}(\overline{\bar{v}})=\overline{g(v)}$. We must show that this is welldefined: For $v_{1}, v_{2} \in V$, we have

$$
\begin{aligned}
\overline{\overline{v_{1}}}=\overline{\overline{v_{2}}} \Leftrightarrow v_{1}-v_{2} \in g^{-1}(W) & \Leftrightarrow g\left(v_{1}-v_{2}\right) \in W \Leftrightarrow g\left(v_{1}\right)-g\left(v_{2}\right) \in W \\
\Leftrightarrow & \overline{g\left(v_{1}\right)}=\overline{g\left(v_{2}\right)} .
\end{aligned}
$$

This shows that \bar{g} is both well-defined and one-to-one. Since g is onto, it is clear that \bar{g} is onto as well.
8b. Show that $H:=\{g \in \mathrm{GL}(V): g(W)=W\}$ is a subgroup $\mathrm{GL}(V)$ and that there is a natural grup homomorphism φ from H into $\mathrm{GL}(V / W)$. (4 pts.)

Proof: Clearly H is a subgroup. From part a, the $\operatorname{map} \varphi$ defined by $\varphi(g)=\bar{g}$ from H into GL (V / W) is well-defined. To show it is a homomorphism of groups, we compute: $\varphi(a b)(\bar{v})=\overline{(a b)(v)}=\overline{a(b(v))}=\bar{a}(\overline{b(v)})=\bar{a}(\bar{b}(\bar{v}))=(\bar{a} \circ \bar{b})(\bar{v})=(\varphi(a) \circ \varphi(b))(\bar{v})$ for all $\bar{v} \in$ V / W. Thus $\varphi(a b)=\varphi(a) \circ \varphi(b)$.
8c. Find the kernel of the above homomorphism φ. (2 pts.)
Proof: $g \in \operatorname{Ker} \varphi \Leftrightarrow \varphi(g)=\operatorname{Id}_{V / W} \Leftrightarrow \bar{g}=\operatorname{Id}_{V / W} \Leftrightarrow \bar{g}(\bar{v})=\bar{v}$ for all $v \in V \Leftrightarrow \overline{g(v)}=\bar{v}$ for all $v \in V \Leftrightarrow g(v)-v \in W$ for all $v \in V \Leftrightarrow g(v) \in v+W$ for all $v \in V$. Hence,

$$
\operatorname{Ker} \varphi=\{g \in \operatorname{GL}(V): g(v) \in v+W \text { for all } v \in V\}
$$

(Note that such a g is necessarily in H, just take $v \in W$.
8d. Let $\psi \in \operatorname{GL}(V / W)$. Let $\left(w_{i}\right)_{i \in I} \cup\left(v_{j}\right)_{j \in J}$ be a basis of V such that $\left(w_{i}\right)_{i \in I}$ is a basis of W. For $j \in J$, let $u_{j} \in V$ be such that $\psi\left(\overline{v_{j}}\right)=\overline{u_{j}}$. Show that $\left(w_{i}\right)_{i \in I} \cup\left(u_{j}\right)_{j \in J}$ is a basis of V. (7 pts.)

Proof: We first show the linear independence: Suppose $\sum_{i \in I} \alpha_{i} w_{i}+\sum_{j \in J} \beta_{j} u_{j}=0$. Computing modulo W, we get $\psi\left(\sum_{j \in J} \beta_{j} \overline{v_{j}}\right)=\sum_{j \in J} \beta_{j} \psi\left(\overline{v_{j}}\right)=\sum_{j \in J} \beta_{j} \overline{u_{j}}=\overline{0}$. Since ψ is one-to-one, this shows that $\sum_{j \in J} \beta_{j} \overline{v_{j}}=\overline{0}$. Hence $\sum_{j \in J} \beta_{j} v_{j} \in W$. By the choice of $\left(v_{j}\right)_{j}$, this implies that $\beta_{j}=0$ for all j. Hence $\sum_{i \in I} \alpha_{i} w_{i}=\sum_{i \in I} \alpha_{i} w_{i}+\sum_{j \in J} \beta_{j} u_{j}=0$ and so by the choice of $\left(w_{i}\right)_{i}$, we get $\alpha_{i}=0$ for all i. This shows the linear independence.
Now we show that the set generates V. Let $v \in V$. Since ψ is onto, there is a $\bar{u} \in V / W$ such that $\psi(\bar{u})=\bar{v}$. Since $\left(\overline{v_{j}}\right)_{j}$ generates V / W there are finitely many scalars α_{j} such that $\bar{u}=\sum_{j} \alpha_{j} \overline{v_{j}}$. Then

$$
\bar{v}=\psi(\bar{u})=\psi\left(\sum_{j} \alpha_{j} \overline{v_{j}}\right)=\sum_{j} \alpha_{j} \psi\left(\overline{v_{j}}\right)=\sum_{j} \alpha_{j} \overline{u_{j}}=\overline{\sum_{j} \alpha_{j} u_{j}} .
$$

Therefore $v-\sum_{j} \alpha_{j} u_{j} \in W$ and we are done.
8e. Show that φ is onto. (15 pts.)
Proof: Let $\psi \in \operatorname{GL}(V / W)$. Let $\left(w_{i}\right)_{i \in I} \cup\left(v_{j}\right)_{j_{\in J}}$ be a basis of V such that $\left(w_{i}\right)_{i \in I}$ is a basis of W. For $j \in J$, let $u_{j} \in V$ be such that $\psi\left(\overline{v_{j}}\right)=\overline{u_{j}}$. We know by the previous question that $\left(w_{i}\right)_{i \in I} \cup\left(u_{j}\right)_{j \in J}$ is a basis of V. Define $g \in \operatorname{End} V$ by $g\left(w_{i}\right)=w_{i}$ and $g\left(v_{j}\right)=u_{j}$. Since g sends a basis to a basis, it is clear that $g \in \operatorname{GL}(V)$. Also $\left.g\right|_{W}=\operatorname{Id}_{W}$ and $\varphi(g)=$ ψ.
8f. Find a subgroup of $\mathrm{GL}(V)$ which is naturally isomorphic to $\mathrm{GL}(V / W)$. (15 pts.)
Proof: Above, we showed in fact that for all $\psi \in \mathrm{GL}(V / W)$ there is a $g \in G$ such that $\varphi(g)=\psi$ and $\left.g\right|_{W}=\operatorname{Id}_{W}$. Let $K=\left\{g \in \operatorname{GL}(V):\left.g\right|_{W}=\operatorname{Id}_{W}\right\}$. It is clear that $K \leq \operatorname{GL}(V)$. The restriction of φ to K is onto by 4 e . But this restriction of φ is not one-to-one in general. Let $U \leq V$ be a complement of W in V. Let

$$
L=\left\{g \in \mathrm{GL}(V):\left.g\right|_{W}=\operatorname{Id}_{W} \text { and } g(U)=U\right\} .
$$

Then the restriction of φ to L is an isomorphism as can be shown easily.

