Math 231: Linear Algebra I Final Ali Nesin January 2008

- 1. Let V be a finite dimensional vector space. Let A, $B \in \text{End } V$ be such that $AB = \text{Id}_V$. Show that $BA = \text{Id}_V$. Show that this is false if V is infinite dimensional. (5 pts.) **Proof:** Clearly B is one to one. Hence it is also onto. Since V is finite dimensional, B is then invertible. Let C be the inverse of B. Since $AB = \text{Id}_V = CB$, we have (A - C)B = 0. Since B is invertible, it follows that $A = C = B^{-1}$. Therefore $BA = BB^{-1} = \text{Id}_V$. If V is infinite dimensional this is false. Indeed let V = K[X] and A and B be defined by A(f) = (f - f(0))/X and B(f) = Xf.
- Let V be a vector space of dimension n < ∞. A sequence V₀ < ... < V_k of subspaces of V is called a *flag* and k is called the *length* of that flag.
 2a. What is the maximal possible length of a flag? Construct a flag of maximal length
- (3 pts.)

Answer: Since $0 \le \dim V_0 < ... < \dim V_k \le \dim V = n$, we must have $k \le n$. If $v_1, ..., v_n$ is a basis of *V*, for each i = 1, ..., n set $V_i = \langle v_1, ..., v_i \rangle$. Then $(V_i)_i$ is a flag of length *n*.

2b. Show that GL(V) acts naturally on the set of flags of length *k*. (2 pts.) **Proof:** Any flag is of course sent to a flag by an element of GL(V).

- 3. Let V be a vector space of dimension n < ∞. Let v₁, ..., v_n be a basis of V. For α ∈ Sym(n), define f(α) = f_α ∈ GL(V) in such a way that f_α(v_i) = v_{α(i)} for all i = 1, ..., n.
 3a. Why such an f(α) must exist? (2 pts.)
 Answer: Because v₁, ..., v_n form a basis of V.
 3b. Show that f is a group homomorphism from Sym(n) into GL(V). (3 pts.)
 Proof: Let α, β ∈ Sym n. Since f_{αβ}(v_i) = v_{αβ(i}) = f_αf_β(v_i) for all i, we have f_{αβ}(v) = f_αf_β(v) for all v ∈ V. Hence f_{αβ} = f_αf_β.
- 4. Let *V* be a vector space of dimension *n* and *W* be a subspace of dimension *k*. It must be clear that $A := \{g \in \text{End}(V) : gW \le W\}$ is a vector space. Find its dimension. (6 pts.) **Proof:** Choose a basis $w_1, ..., w_k$ of *W* and complete it to basis of *V* by adding $v_{k+1}, ..., v_n$. An element of *A* is determined by what it does to this basis. Each of the w_i 's must go to a linear combination of $w_1, ..., w_k$ and this adds k^2 to the basis. Each of the v_j 's must go to a linear combination of $w_1, ..., w_k, v_{k+1}, ..., v_n$.and this adds (n k)n to the basis. Thus dim_K $A = k^2 + (n k)n = n^2 nk + k^2$.
- **5.** Let *V* be a vector space of dimension $n < \infty$. Let $v_1, ..., v_n$ be a basis of *V*. For each i = 1, ..., n let $V_i = \langle v_1, ..., v_i \rangle$. Let $A = \{g \in \text{End}_K(V) : gV_i \leq V_i \text{ for all } i = 1, ..., n\}$. It must be clear that *A* is an algebra over *K*. Find dim_{*K*}(*A*). (4 pts.) **Proof:** For each *i*, $g(v_i)$ must be a linear combination of $v_1, ..., v_i$. Hence dim A = 1 + 2 + ... + n = n(n+1)/2.
- 6. Let V be a vector space of dimension $n < \infty$ over a field K. For a positive integer k and a map f from $V^k = V \times ... \times V$ into K is called *k-multilinear* if f is linear in each coordinate. Let $E_k(V)$ be the set of k-multilinear maps of V. $E_k(V)$ is a vector space. 6a. What is dim $E_k(V)$? (6 pts.)

Proof: Let $v_1, ..., v_n$ be a basis of *V*. An element of $E_k(V)$ is determined by what it does to the set $\{(v_{i_1}, ..., v_{i_k}): i_1, ..., i_k \in \{1, ..., n\}\}$. Thus dim $E_k(V) = n^k$.

6b. A *k*-multilinear map *f* from $V \times ... \times V$ into *K* is called *k*-alternating if for any w_1 , ..., $w_k \in V$, $f(w_1, ..., w_k) = 0$ whenever $w_i = w_j$ for two distinct *i* and *j*. Let $A_k(V)$ be the set of *k*-alternating maps of *V*. Then $A_k(V)$ is a vector space. Show that for any w_1 , ..., $w_k \in V$, $f \in A_k(V)$ and any $\sigma \in \text{Sym } k$,

 $f(w_{\sigma(1)}, ..., w_{\sigma(k)}) = sg(\sigma)f(w_1, ..., w_k).$

(Here sg(σ) is the *signature* of σ , i.e. is 1 or -1, depending on whether $\sigma \in \text{Alt } n$ or not, in other words, sg(σ) = $(-1)^{\ell}$ where ℓ is the number of transpositions whose product is σ). (6 pts.)

6c. What is dim $A_k(V)$? (10 pts.)

Answer and Proof: Let v_1 , ..., v_n be a basis of V. Using 8b, it is easily seen that an element of $A_k(V)$ is determined by what it does to the set

$$\{(v_{i_1}, \dots, v_{i_k}): 1 \le i_1 < \dots < i_k \le n\}$$

which is in bijection with the set of *k*-subsets of $\{1, ..., n\}$. Thus dim $A_k(V) = \binom{n}{k}$. It follows that dim $A_k(V) = 0$ if k > n and dim $A_n(V) = 1$.

7. Let *V* be a vector space and *W* be a subspace of *V*.

7a. Let $(w_i)_{i \in I} \cup (v_j)_{j \in J}$ be a basis of V such that $(w_i)_{i \in I}$ is a basis of W. Show that $(\overline{v_j})_{i \in I}$ is a basis of V/W. (3 pts.)

Proof: First the linear independence: Assume $\sum_{j} \alpha_{j} \overline{v_{j}} = \overline{0}$. Then $\overline{\sum_{j} \alpha_{j} v_{j}} = \overline{0}$ and so $\sum_{j} \alpha_{j} v_{j} \in W$. Since $(w_{i})_{i \in I} \cup (v_{j})_{j \in J}$ be a basis of *V*, this shows that $\alpha_{j} = 0$ for all *j*. That $(\overline{v_{j}})_{j \in J}$ generates *V/W* is much easier.

7b. Let $(w_i)_{i \in I}$ be a basis of W. Let $(v_j)_{j \in J}$ be such that $(\overline{v_j})_{j \in J}$ is a basis of V/W. Show that $(w_i)_{i \in I} \cup (v_j)_{j \in J}$ be a basis of V. (3 pts.) **Proof:** First the linear independence: Assume $\sum_i \alpha_i w_i + \sum_j \beta_j v_j = 0$. Taking modulo W we get $\sum_j \beta_j \overline{v_j} = \overline{0}$. Since $(\overline{v_j})_{j \in J}$ is a basis of V/W, we get $\beta_j = 0$ all j. Hence $\sum_i \alpha_i w_i = \sum_i \alpha_i w_i + \sum_j \beta_j v_j = 0$ and since $(w_i)_{i \in I}$ be a basis of W we get $\alpha_i = 0$ all i. Generating: Let $v \in V$. Then $\overline{v} = \sum_j \alpha_j \overline{v_j}$ for some α_i . Then $\overline{v} - \sum_j \alpha_j \overline{v_j} \in W$ and the rest is easy.

8. Let V be a vector space and $W \le V$. Let $g \in GL(V)$. 8a. Show that g induces naturally an isomorphism from $V/g^{-1}(W)$ onto V/W. (4 pts.) Proof: Define $\overline{g}: V/g^{-1}(W) \to V/W$ via $\overline{g}(v) = \overline{g(v)}$. We must show that this is welldefined: For $v_1, v_2 \in V$, we have

$$v_1 = v_2 \iff v_1 - v_2 \in g^{-1}(W) \iff g(v_1 - v_2) \in W \iff g(v_1) - g(v_2) \in W$$
$$\iff \overline{g(v_1)} = \overline{g(v_2)}.$$

This shows that \overline{g} is both well-defined and one-to-one. Since g is onto, it is clear that \overline{g} is onto as well.

8b. Show that $H := \{g \in GL(V) : g(W) = W\}$ is a subgroup GL(V) and that there is a natural grup homomorphism φ from *H* into GL(V/W). (4 pts.)

Proof: Clearly *H* is a subgroup. From part a, the map φ defined by $\varphi(g) = \overline{g}$ from *H* into GL(*V*/*W*) is well-defined. To show it is a homomorphism of groups, we compute: $\varphi(ab)(\overline{v}) = \overline{(ab)(v)} = \overline{a(b(v))} = \overline{a(b(v))} = \overline{a(b(v))} = \overline{a(b(v))} = (\overline{a} \circ \overline{b})(\overline{v}) = (\varphi(a) \circ \varphi(b))(\overline{v})$ for all $\overline{v} \in V/W$. Thus $\varphi(ab) = \varphi(a) \circ \varphi(b)$.

8c. Find the kernel of the above homomorphism φ . (2 pts.)

Proof: $g \in \text{Ker } \varphi \Leftrightarrow \varphi(g) = \text{Id}_{V/W} \Leftrightarrow \overline{g} = \text{Id}_{V/W} \Leftrightarrow \overline{g}(\overline{v}) = \overline{v} \text{ for all } v \in V \Leftrightarrow \overline{g(v)} = \overline{v}$ for all $v \in V \Leftrightarrow g(v) - v \in W$ for all $v \in V \Leftrightarrow g(v) \in v + W$ for all $v \in V$. Hence, Ker $\varphi = \{g \in \text{GL}(V) : g(v) \in v + W \text{ for all } v \in V\}.$

(Note that such a g is necessarily in H, just take $v \in W$.

8d. Let $\psi \in \operatorname{GL}(V/W)$. Let $(w_i)_{i \in I} \cup (v_j)_{j \in J}$ be a basis of V such that $(w_i)_{i \in I}$ is a basis of W. For $j \in J$, let $u_j \in V$ be such that $\psi(v_j) = \overline{u_j}$. Show that $(w_i)_{i \in I} \cup (u_j)_{j \in J}$ is a basis of V. (7 pts.)

Proof: We first show the linear independence: Suppose $\sum_{i \in J} \alpha_i w_i + \sum_{j \in J} \beta_j u_j = 0$. Computing modulo *W*, we get $\psi(\sum_{j \in J} \beta_j \overline{v_j}) = \sum_{j \in J} \beta_j \psi(\overline{v_j}) = \sum_{j \in J} \beta_j \overline{u_j} = \overline{0}$. Since ψ is one-to-one, this shows that $\sum_{j \in J} \beta_j \overline{v_j} = \overline{0}$. Hence $\sum_{j \in J} \beta_j v_j \in W$. By the choice of $(v_j)_j$, this implies that $\beta_j = 0$ for all *j*. Hence $\sum_{i \in I} \alpha_i w_i = \sum_{i \in I} \alpha_i w_i + \sum_{j \in J} \beta_j u_j = 0$ and so by the choice of $(w_i)_i$, we get $\alpha_i = 0$ for all *i*. This shows the linear independence.

Now we show that the set generates V. Let $v \in V$. Since ψ is onto, there is a $\overline{u} \in V/W$ such that $\psi(\overline{u}) = \overline{v}$. Since $(\overline{v_j})_i$ generates V/W there are finitely many scalars α_j such

that
$$\overline{u} = \sum_{j} \alpha_{j} \overline{v_{j}}$$
. Then
 $\overline{v} = \psi(\overline{u}) = \psi(\sum_{j} \alpha_{j} \overline{v_{j}}) = \sum_{j} \alpha_{j} \psi(\overline{v_{j}}) = \sum_{j} \alpha_{j} \overline{u_{j}} = \overline{\sum_{j} \alpha_{j} u_{j}}.$

Therefore $v - \sum_{i} \alpha_{j} u_{i} \in W$ and we are done.

8e. Show that φ is onto. (15 pts.)

Proof: Let $\psi \in GL(V/W)$. Let $(w_i)_{i \in I} \cup (v_j)_{j \in J}$ be a basis of *V* such that $(w_i)_{i \in I}$ is a basis of *W*. For $j \in J$, let $u_j \in V$ be such that $\psi(\overline{v_j}) = \overline{u_j}$. We know by the previous question that $(w_i)_{i \in I} \cup (u_j)_{j \in J}$ is a basis of *V*. Define $g \in End V$ by $g(w_i) = w_i$ and $g(v_j) = u_j$. Since *g* sends a basis to a basis, it is clear that $g \in GL(V)$. Also $g|_W = Id_W$ and $\varphi(g) = \psi$.

8f. Find a subgroup of GL(V) which is naturally isomorphic to GL(V/W). (15 pts.)

Proof: Above, we showed in fact that for all $\psi \in GL(V/W)$ there is a $g \in G$ such that $\varphi(g) = \psi$ and $g|_W = Id_W$. Let $K = \{g \in GL(V) : g|_W = Id_W\}$. It is clear that $K \leq GL(V)$. The restriction of φ to K is onto by 4e. But this restriction of φ is not one-to-one in general. Let $U \leq V$ be a complement of W in V. Let

 $L = \{g \in \operatorname{GL}(V) : g|_W = \operatorname{Id}_W \text{ and } g(U) = U\}.$

Then the restriction of φ to *L* is an isomorphism as can be shown easily.