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1. Let V be a finite dimensional vector space. Let A, B ∈ End V be such that AB = IdV. 

Show that BA = IdV. Show that this is false if V is infinite dimensional. (5 pts.) 

Proof: Clearly B is one to one. Hence it is also onto. Since V is finite dimensional, B is 

then invertible. Let C be the inverse of B. Since AB = IdV = CB, we have (A − C)B = 0. 

Since B is invertible, it follows that A = C = B
−1

. Therefore BA = BB
−1

 = IdV. If V is 

infinite dimensional this is false. Indeed let V = K[X] and A and B be defined by A(f) = 

(f − f(0))/X and B(f) = Xf. 

 

2. Let V be a vector space of dimension n < ∞. A sequence V0 < ... < Vk of subspaces of V 

is called a flag and k is called the length of that flag.  

2a. What is the maximal possible length of a flag? Construct a flag of maximal length 

(3 pts.) 

Answer: Since 0 ≤ dim V0 < ... < dim Vk ≤ dim V = n, we must have k ≤ n. If v1, ..., vn 

is a basis of V, for each i = 1, ..., n set Vi = 〈v1, ..., vi〉. Then (Vi)i is a flag of length n. 

2b. Show that GL(V) acts naturally on the set of flags of length k. (2 pts.) 

Proof: Any flag is of course sent to a flag by an element of GL(V). 

 

3. Let V be a vector space of dimension n < ∞. Let v1, ..., vn be a basis of V. For α ∈ 

Sym(n), define f(α) = fα ∈ GL(V) in such a way that fα(vi) = vα(i) for all i = 1, ..., n.  

3a. Why such an f(α) must exist? (2 pts.) 

Answer: Because v1, ..., vn form a basis of V. 

3b. Show that f is a group homomorphism from Sym(n) into GL(V). (3 pts.) 

Proof: Let α, β ∈ Sym n. Since fαβ(vi) = vαβ(i) = fα(vβ(i)) = fαfβ(vi) for all i, we have 

fαβ(v) = fαfβ(v) for all v ∈ V. Hence fαβ = fαfβ. 

 

4. Let V be a vector space of dimension n and W be a subspace of dimension k. It must be 

clear that A := {g ∈ End(V) : gW ≤ W} is a vector space. Find its dimension. (6 pts.) 

Proof: Choose a basis w1, ..., wk of W and complete it to basis of V by adding vk+1, ..., 

vn. An element of A is determined by what it does to this basis. Each of the wi’s must 

go to a linear combination of w1, ..., wk and this adds k
2
 to the basis. Each of the vj’s 

must go to a linear combination of w1, ..., wk, vk+1, ..., vn.and this adds (n − k)n to the 

basis. Thus dimK A = k
2
 + (n − k)n = n

2
 − nk + k

2
. 

 

5. Let V be a vector space of dimension n < ∞. Let v1, ..., vn be a basis of V. For each i = 

1, ..., n let Vi = 〈v1, ..., vi〉. Let A = {g ∈ EndK(V) : gVi ≤ Vi for all i = 1, .., n}. It must 

be clear that A is an algebra over K. Find dimK(A). (4 pts.) 

Proof: For each i, g(vi) must be a linear combination of  v1, ..., vi. Hence dim A = 1 + 2 

+ ... + n = n(n+1)/2. 

 

6. Let V be a vector space of dimension n < ∞ over a field K. For a positive integer k and 

a map f from V
k
 = V × ... × V into K is called k-multilinear if f is linear in each 

coordinate. Let Ek(V) be the set of k-multilinear maps of V. Ek(V) is a vector space.  

6a. What is dim Ek(V)? (6 pts.) 

Proof: Let v1, ..., vn be a basis of V. An element of Ek(V) is determined by what it does 

to the set ( ){ }},...,1{,...,:,..., 11
niivv kii k

∈ . Thus dim Ek(V) = n
k
. 



6b. A k-multilinear map f from V × ... × V into K is called k-alternating if for any w1, 

..., wk ∈ V, f(w1, ..., wk) = 0 whenever wi = wj for two distinct i and j. Let Ak(V) be the 

set of k-alternating maps of V. Then Ak(V) is a vector space. Show that for any w1, ..., 

wk ∈ V, f ∈ Ak(V) and any σ ∈ Sym k,   

f(wσ(1), ..., wσ(k)) = sg(σ)f(w1, ..., wk). 

(Here sg(σ) is the signature of σ, i.e. is 1 or −1, depending on whether σ ∈ Alt n or 

not, in other words, sg(σ) = (−1)� where � is the number of transpositions whose 

product is σ). (6 pts.) 

6c. What is dim Ak(V)? (10 pts.) 

Answer and Proof: Let v1, ..., vn be a basis of V. Using 8b, it is easily seen that an 

element of Ak(V) is determined by what it does to the set 

( ){ }niivv kii k
≤<<≤ ...1:,..., 11

 

which is in bijection with the set of k-subsets of {1, ..., n}. Thus dim Ak(V) = .








k

n
 It 

follows that dim Ak(V) = 0 if k > n and dim An(V) = 1. 

 

7. Let V be a vector space and W be a subspace of V. 

7a. Let (wi)i∈I ∪ (vj)j∈J be a basis of V such that (wi)i∈I is a basis of W. Show that 

( )
Jjjv

∈
 is a basis of V/W. (3 pts.) 

Proof: First the linear independence: Assume .0=α∑ j jj v  Then 0=α∑ j jjv  and 

so .Wv
j jj ∈α∑  Since (wi)i∈I ∪ (vj)j∈J be a basis of V, this shows that αj = 0 for all j. 

That ( )
Jjjv

∈
 generates V/W is much easier. 

7b. Let (wi)i∈I be a basis of W. Let (vj)j∈J be such that ( )
Jjjv

∈
 is a basis of V/W. Show 

that (wi)i∈I ∪ (vj)j∈J be a basis of V. (3 pts.) 

Proof: First the linear independence: Assume .0=β+α ∑∑ j jji ii vw  Taking modulo 

W we get .0=β∑ j jj v  Since ( )
Jjjv

∈
 is a basis of V/W, we get βj = 0 all j. Hence 

0=β+α=α ∑∑∑ j jji iii ii vww  and since (wi)i∈I be a basis of W we get αi = 0 all i. 

Generating: Let v ∈ V. Then ∑ α=
j jj vv  for some αi. Then Wvv

j jj ∈α−∑  and 

the rest is easy. 

 

8. Let V be a vector space and W ≤ V. Let g ∈ GL(V).  

8a. Show that g induces naturally an isomorphism from V/g
−1

(W) onto V/W. (4 pts.) 

Proof: Define g : V/g
−1

(W) → V/W via ( ) .)(vgvg =  We must show that this is well-

defined: For v1, v2 ∈ V, we have  

21 vv =  ⇔ v1 − v2 ∈ g
−1

(W) ⇔ g(v1 − v2) ∈ W ⇔  g(v1) − g(v2) ∈ W   

⇔ )()( 21 vgvg = . 

This shows that g  is both well-defined and one-to-one. Since g is onto, it is clear that 

g  is onto as well. 

8b. Show that H := {g ∈ GL(V) : g(W) = W} is a subgroup GL(V) and that there is a 

natural grup homomorphism ϕ from H into GL(V/W). (4 pts.) 



Proof: Clearly H is a subgroup. From part a, the map ϕ defined by ϕ(g) = g  from H 

into GL(V/W) is well-defined. To show it is a homomorphism of groups, we compute: 

( ) ( ) ( )( ) ( )( ) ( )( )vbavbavbavbavbavabvab )()()())(())(()( ϕϕ======ϕ oo  for all v  ∈ 

V/W. Thus ϕ(ab) = ϕ(a)◦ϕ(b). 

8c. Find the kernel of the above homomorphism ϕ. (2 pts.) 

Proof: g ∈ Ker ϕ ⇔ ϕ(g) = IdV/W ⇔ WVg /Id=  ⇔ ( ) vvg =  for all v ∈ V ⇔ vvg =)(  

for all v ∈ V ⇔ g(v) − v ∈ W for all v ∈ V ⇔ g(v) ∈ v + W for all v ∈ V. Hence, 

Ker ϕ = {g ∈ GL(V) : g(v) ∈ v + W for all v ∈ V}. 

(Note that such a g is necessarily in H, just take v ∈ W. 

8d. Let ψ ∈ GL(V/W). Let (wi)i∈I ∪ (vj)j∈J be a basis of V such that (wi)i∈I is a basis of 

W. For j ∈ J, let uj ∈ V be such that ( ) jj uv =ψ . Show that (wi)i∈I ∪ (uj)j∈J is a basis of 

V. (7 pts.) 

Proof: We first show the linear independence: Suppose ∑∑ ∈∈
=β+α

Jj jjIi ii uw .0  

Computing modulo W, we get ( ) ( ) .0=β=ψβ=βψ ∑∑∑ ∈∈∈ Jj jjJj jjJj jj uvv  Since ψ 

is one-to-one, this shows that .0=β∑ ∈Jj jj v  Hence .Wv
Jj jj ∈β∑ ∈

 By the choice of 

(vj)j, this implies that βj = 0 for all j. Hence 0=β+α=α ∑∑∑ ∈∈∈ Jj jjIi iiIi ii uww  

and so by the choice of (wi)i, we get αi = 0 for all i. This shows the linear 

independence.  

Now we show that the set generates V. Let v ∈ V. Since ψ is onto, there is a WVu /∈  

such that ( ) .vu =ψ  Since ( )
jjv  generates V/W there are finitely many scalars αj such 

that ∑ α=
j jj vu .  Then 

( ) ( ) ( ) .. ∑∑∑∑ α=α=ψα=αψ=ψ=
j jjj jjj jjj jj uuvvuv  

Therefore Wuv
j jj ∈α−∑  and we are done. 

8e. Show that ϕ is onto. (15 pts.) 

Proof: Let ψ ∈ GL(V/W). Let (wi)i∈I ∪ (vj)j∈J be a basis of V such that (wi)i∈I is a basis 

of W. For j ∈ J, let uj ∈ V be such that ( ) jj uv =ψ . We know by the previous question 

that (wi)i∈I ∪ (uj)j∈J is a basis of V. Define g ∈ End V by g(wi) = wi and g(vj) = uj. 

Since g sends a basis to a basis, it is clear that g ∈ GL(V). Also gW = IdW  and ϕ(g) = 

ψ. 

8f. Find a subgroup of GL(V) which is naturally isomorphic to GL(V/W). (15 pts.) 

Proof: Above, we showed in fact that for all ψ ∈ GL(V/W) there is a g ∈ G such that 

ϕ(g) = ψ and gW = IdW. Let K = {g ∈ GL(V) : gW = IdW}. It is clear that K ≤ GL(V). 

The restriction of ϕ to K is onto by 4e. But this restriction of ϕ is not one-to-one in 

general. Let U ≤ V be a complement of W in V. Let  

L = {g ∈ GL(V) : gW = IdW and g(U) = U}. 

Then the restriction of ϕ to L is an isomorphism as can be shown easily. 

 


