Linear Algebra MT December 2008 Ali Nesin

- **1.** Find vector spaces U and V and a one-to-one linear map $\varphi : U \to V$ which is not onto.
- **2.** Find vector spaces U and V and a surjective linear map $\varphi : U \to V$ which is not one-to-one.
- 3. Let V be a vector space. Let U and W be subspaces of V. Show that $(U + W)/W \approx U/(U \cap W)$.
- 4. Let $V = \mathbb{R}^3$. 4a. Show that the vectors $v_1 = (1, 1, 0)$, $v_2 = (1, 2, -1)$, $v_3 = (0, -1, 2)$ are linearly independent. 4b. For any $v \in V$, find a(v), b(v), $c(v) \in \mathbb{R}$ such that $v = a(v)v_1 + b(v)v_2 + c(v)v_3$. 4c. Let $\varphi : V \to V$ be defined by $\varphi(x, y, z) = (x y, y + 2z, x + y)$. Write the matrix of φ with respect to the bases v_1, v_2, v_3 .
- **5.** Let *V* be a vector space of dimension *n* over a field *F*. Let $W \le V$. **5a.** Show that { $\varphi \in$ End_{*K*}(*V*) : $\varphi(W) \le W$ } is a subalgebra, say *P*_{*W*} of End_{*K*}(*V*). **5b.** Find a relationship between dim *P*_{*W*}, dim *W* and dim *V*.
- 6. Let V be a vector space over a field K. Let V^* be the vector space of linear maps from V into K. Let $(v_i)_{i \in I}$ be a basis of V.

6a. For $i \in I$ show that there is a unique $v_i^* \in V^*$ such that $v_i^*(v_j) = \delta_{i,j}v_j$ for all $j \in I$. Show that $(v_i^*)_{i \in I}$ is a linearly independet family of elements of V^* .

6b. Show that if *V* is finite dimensional then so is V^* and that dim $V = \dim V^*$.

6c. Show that the set $(v_i^*)_{i \in I}$ of 4a is not a basis of V^* if dim $V^* = \infty$.

6d. For $A \subseteq I$ define $v_A^*(v_i) = \delta_A(i)v_i$ where δ_J is the characteristic function of J, i.e. $\delta_A(i)$ is equal to 1 or 0 depending on whether $i \in A$ or not. Assume I is infinite. Let \wp be a set of infinite subsets of I such that for any two distinct $A, B \in \wp, A \cap B$ is finite. Show that $(v_A^*)_{A \in \wp}$ is a linearly independent set of vectors.

6e. Show that \mathbb{N} has uncountably many (in fact $|\mathbb{R}|$ many) subsets such that the intersection of any two distinct ones is finite.

6f. Deduce from 4d and 4e that if dim $V = \infty$ then dim $V^* \ge |\mathbb{R}|$.

- 7. Let *T* be a set. Let $\ell^{\infty}(T) = \{f : T \to \mathbb{R} : f \text{ is bounded}\}$. Show that $\ell^{\infty}(T)$ is a vector space. For $f \in \ell^{\infty}(T)$, define $||f|| = \sup \{|f(t)| : t \in T\}$. Show that for all $f, g \in \ell^{\infty}(T)$, and $\lambda \in \mathbb{R}$, we have,
 - **7a.** $||f|| \ge 0$ for all *f*.
 - **7b.** ||f|| = 0 iff f = 0.
 - 7c. $\|\lambda f\| = |\lambda| \|f\|$.
 - **7d.** $||f + g|| \le ||f|| + ||g||$.

A vector space *V* over \mathbb{R} together with a map $|| || : V \to \mathbb{R}$ that satisfies 4a, 4b, 4c, 4d is called a *normed vector space*. Thus $\ell^{\infty}(T)$ is a normed vector space together with the map || || defined above.

- 8. Let (V, || ||) be a normed vector space. For $v, w \in V$ define d(v, w) = ||v w||. Show that (V, d) is a metric space.
- 9. Show that the normed vector space $\ell^{\infty}(T)$ defined in #4 is complete with respect to the norm defined in #5.