1. Find vector spaces U and V and a one-to-one linear map $\varphi: U \rightarrow V$ which is not onto.
2. Find vector spaces U and V and a surjective linear map $\varphi: U \rightarrow V$ which is not one-toone.
3. Let V be a vector space. Let U and W be subspaces of V. Show that $(U+W) / W \approx$ $U /(U \cap W)$.
4. Let $V=\mathbb{R}^{3}$. 4a. Show that the vectors $v_{1}=(1,1,0), v_{2}=(1,2,-1), v_{3}=(0,-1,2)$ are linearly independent. 4b. For any $v \in V$, find $a(v), b(v), c(v) \in \mathbb{R}$ such that $v=a(v) v_{1}+$ $b(v) v_{2}+c(v) v_{3}$. 4c. Let $\varphi: V \rightarrow V$ be defined by $\varphi(x, y, z)=(x-y, y+2 z, x+y)$. Write the matrix of φ with respect to the bases v_{1}, v_{2}, v_{3}.
5. Let V be a vector space of dimension n over a field F. Let $W \leq V$. 5a. Show that $\{\varphi \in$ $\left.\operatorname{End}_{K}(V): \varphi(W) \leq W\right\}$ is a subalgebra, say P_{W} of $\operatorname{End}_{K}(V)$. 5b. Find a relationship between $\operatorname{dim} P_{W}, \operatorname{dim} W$ and $\operatorname{dim} V$.
6. Let V be a vector space over a field K. Let V^{*} be the vector space of linear maps from V into K. Let $\left(v_{i}\right)_{i \in I}$ be a basis of V.
6a. For $i \in I$ show that there is a unique $v_{i}{ }^{*} \in V^{*}$ such that $v_{i}^{*}\left(v_{j}\right)=\delta_{i, j} v_{j}$ for all $j \in I$. Show that $\left(v_{i}^{*}\right)_{i \in I}$ is a linearly independet family of elements of V^{*}.
6b. Show that if V is finite dimensional then so is V^{*} and that $\operatorname{dim} V=\operatorname{dim} V^{*}$.
6c. Show that the set $\left(v_{i}^{*}\right)_{i \in I}$ of 4 a is not a basis of V^{*} if $\operatorname{dim} V^{*}=\infty$.
6d. For $A \subseteq I$ define $v_{A} *\left(v_{i}\right)=\delta_{A}(i) v_{i}$ where δ_{J} is the characteristic function of J, i.e. $\delta_{A}(i)$ is equal to 1 or 0 depending on whether $i \in A$ or not. Assume I is infinite. Let \wp be a set of infinite subsets of I such that for any two distinct $A, B \in \wp, A \cap B$ is finite. Show that $\left(v_{A} *\right)_{A \in \mathfrak{~}}$ is a linearly independent set of vectors.
6e. Show that \mathbb{N} has uncountably many (in fact $|\mathbb{R}|$ many) subsets such that the intersection of any two distinct ones is finite.
6f. Deduce from 4 d and 4 e that if $\operatorname{dim} V=\infty$ then $\operatorname{dim} V^{*} \geq|\mathbb{R}|$.
7. Let T be a set. Let $\ell^{\infty}(T)=\{f: T \rightarrow \mathbb{R}: f$ is bounded $\}$. Show that $\ell^{\infty}(T)$ is a vector space. For $f \in \ell^{\infty}(T)$, define $\|f\|=\sup \{|f(t)|: t \in T\}$. Show that for all $f, g \in \ell^{\infty}(T)$, and $\lambda \in \mathbb{R}$, we have,
7a. $\|f\| \geq 0$ for all f.
7b. $\|f\|=0$ iff $f=0$.
7c. $\|\lambda f\|=|\lambda|\|f\|$.
7d. $\|f+g\| \leq\|f\|+\|g\|$.
A vector space V over \mathbb{R} together with a map $\|\|: V \rightarrow \mathbb{R}$ that satisfies $4 \mathrm{a}, 4 \mathrm{~b}, 4 \mathrm{c}, 4 \mathrm{~d}$ is called a normed vector space. Thus $\ell^{\infty}(T)$ is a normed vector space together with the map || || defined above.
8. Let $(V,\| \|)$ be a normed vector space. For $v, w \in V$ define $d(v, w)=\|v-w\|$. Show that (V, d) is a metric space.
9. Show that the normed vector space $\ell^{\infty}(T)$ defined in $\# 4$ is complete with respect to the norm defined in \#5.
